skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum reservoir computing using arrays of Rydberg atoms
Quantum computing promises to provide machine learning with computational advantages. However, noisy intermediate-scale quantum (NISQ) devices pose engineering challenges to realizing quantum machine learning (QML) advantages. Recently, a series of QML computational models inspired by the noise-tolerant dynamics on the brain have emerged as a means to circumvent the hardware limitations of NISQ devices. In this article, we introduce a quantum version of a recurrent neural network (RNN), a well-known model for neural circuits in the brain. Our quantum RNN (qRNN) makes use of the natural Hamiltonian dynamics of an ensemble of interacting spin-1/2 particles as a means for computation. In the limit where the Hamiltonian is diagonal, the qRNN recovers the dynamics of the classical version. Beyond this limit, we observe that the quantum dynamics of the qRNN provide it quantum computational features that can aid it in computation. To this end, we study a qRNN based on arrays of Rydberg atoms, and show that the qRNN is indeed capable of replicating the learning of several cognitive tasks such as multitasking, decision making, and long-term memory by taking advantage of several key features of this platform such as interatomic species interactions, and quantum many-body scars.  more » « less
Award ID(s):
2016244
PAR ID:
10340309
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract State-of-the-art quantum machine learning (QML) algorithms fail to offer practical advantages over their notoriously powerful classical counterparts, due to the limited learning capabilities of QML algorithms, the constrained computational resources available on today’s noisy intermediate-scale quantum (NISQ) devices, and the empirically designed circuit ansatz for QML models. In this work, we address these challenges by proposing a hybrid quantum–classical neural network (CaNN), which we call QCLIP, for Quantum Contrastive Language-Image Pre-Training. Rather than training a supervised QML model to predict human annotations, QCLIP focuses on more practical transferable visual representation learning, where the developed model can be generalized to work on unseen downstream datasets. QCLIP is implemented by using CaNNs to generate low-dimensional data feature embeddings followed by quantum neural networks to adapt and generalize the learned representation in the quantum Hilbert space. Experimental results show that the hybrid QCLIP model can be efficiently trained for representation learning. We evaluate the representation transfer capability of QCLIP against the classical Contrastive Language-Image Pre-Training model on various datasets. Simulation results and real-device results on NISQIBM_Aucklandquantum computer both show that the proposed QCLIP model outperforms the classical CLIP model in all test cases. As the field of QML on NISQ devices is continually evolving, we anticipate that this work will serve as a valuable foundation for future research and advancements in this promising area. 
    more » « less
  2. Quantum Computing (QC) has gained immense popularity as a potential solution to deal with the ever-increasing size of data and associated challenges leveraging the concept of quantum random access memory (QRAM). QC promises quadratic or exponential increases in computational time with quantum parallelism and thus offer a huge leap forward in the computation of Machine Learning algorithms. This paper analyzes speed up performance of QC when applied to machine learning algorithms, known as Quantum Machine Learning (QML). We applied QML methods such as Quantum Support Vector Machine (QSVM), and Quantum Neural Network (QNN) to detect Software Supply Chain (SSC) attacks. Due to the access limitations of real quantum computers, the QML methods were implemented on open-source quantum simulators such as IBM Qiskit and TensorFlow Quantum. We evaluated the performance of QML in terms of processing speed and accuracy and finally, compared with its classical counterparts. Interestingly, the experimental results differ to the speed up promises of QC by demonstrating higher computational time and lower accuracy in comparison to the classical approaches for SSC attacks. 
    more » « less
  3. Quantum Computing in the Noisy Intermediate-Scale Quantum (NISQ) era has shown promising applications in machine learning, optimization, and cryptography. Despite these progresses, challenges persist due to system noise, errors, and decoherence. These system noises complicate the simulation of quantum systems. The depolarization channel is a standard tool for simulating a quantum system’s noise. However, modeling such noise for practical applications is computationally expensive when we have limited hardware resources, as is the case in the NISQ era. This work proposes a modified representation for a single-qubit depolarization channel. Our modified channel uses two Kraus operators based only on X and Z Pauli matrices. Our approach reduces the computational complexity from six to four matrix multiplications per channel execution. Experiments on a Quantum Machine Learning (QML) model on the Iris dataset across various circuit depths and depolarization rates validate that our approach maintains the model’s accuracy while improving efficiency. This simplified noise model enables more scalable simulations of quantum circuits under depolarization, advancing capabilities in the NISQ era. 
    more » « less
  4. Quantum Computing has attracted much research attention because of its potential to achieve fundamental speed and efficiency improvements in various domains. Among different quantum algorithms, Parameterized Quantum Circuits (PQC) for Quantum Machine Learning (QML) show promises to realize quantum advantages on the current Noisy Intermediate-Scale Quantum (NISQ) Machines. Therefore, to facilitate the QML and PQC research, a recent python library called TorchQuantum has been released. It can construct, simulate, and train PQC for machine learning tasks with high speed and convenient debugging supports. Besides quantum for ML, we want to raise the community's attention on the reversed direction: ML for quantum. Specifically, the TorchQuantum library also supports using data-driven ML models to solve problems in quantum system research, such as predicting the impact of quantum noise on circuit fidelity and improving the quantum circuit compilation efficiency. This paper presents a case study of the ML for quantum part in TorchQuantum. Since estimating the noise impact on circuit reliability is an essential step toward understanding and mitigating noise, we propose to leverage classical ML to predict noise impact on circuit fidelity. Inspired by the natural graph representation of quantum circuits, we propose to leverage a graph transformer model to predict the noisy circuit fidelity. We firstly collect a large dataset with a variety of quantum circuits and obtain their fidelity on noisy simulators and real machines. Then we embed each circuit into a graph with gate and noise properties as node features, and adopt a graph transformer to predict the fidelity. We can avoid exponential classical simulation cost and efficiently estimate fidelity with polynomial complexity. Evaluated on 5 thousand random and algorithm circuits, the graph transformer predictor can provide accurate fidelity estimation with RMSE error 0.04 and outperform a simple neural network-based model by 0.02 on average. It can achieve 0.99 and 0.95 R2 scores for random and algorithm circuits, respectively. Compared with circuit simulators, the predictor has over 200× speedup for estimating the fidelity. The datasets and predictors can be accessed in the TorchQuantum library. 
    more » « less
  5. Quantum Neuromorphic Computing (QNC) merges quantum computation with neural computation to create scalable, noise-resilient algorithms for quantum machine learning (QML). At the core of QNC is the quantum perceptron (QP), which leverages the analog dynamics of interacting qubits to enable universal quantum computation. Canonically, a QP features input qubits and one output qubit, and is used to determine whether an input state belongs to a specific class. Rydberg atoms, with their extended coherence times and scalable spatial configurations, provide an ideal platform for implementing QPs. In this work, we explore the implementation of QPs on Rydberg atom arrays, assessing their performance in tasks such as phase classification between Z2, Z3, Z4 and disordered phases, achieving high accuracy, including in the presence of noise. We also perform multi-class entanglement classification by extending the QP model to include multiple output qubits, achieving 95\% accuracy in distinguishing noisy, high-fidelity states based on separability. Additionally, we discuss the experimental realization of QPs on Rydberg platforms using both single-species and dual-species arrays, and examine the error bounds associated with approximating continuous functions. 
    more » « less