Structures operating in high-rate dynamic environments, such as hypersonic vehicles, orbital space infrastructure, and blast mitigation systems, require microsecond (µs) decisionmaking. Advances in real-time sensing, edge-computing, and high-bandwidth computer memory are enabling emerging technologies such as High-rate structural health monitoring (HRSHM) to become more feasible. Due to the time restrictions such systems operate under, a target of 1 millisecond (ms) from event detection to decision-making is set at the goal to enable HRSHM. With minimizing latency in mind, a data-driven method that relies on time-series measurements processed in real-time to infer the state of the structure is investigated in this preliminary work. A methodology for deploying LSTM-based state estimators for structures using subsampled time-series vibration data is presented. The proposed estimator is deployed to an embedded real-time device and the achieved accuracy along with system timing are discussed. The proposed approach has shown potential for high-rate state estimation as it provides sufficient accuracy for the considered structure while a time-step of 2.5 ms is achieved. The Contributions of this work are twofold: 1) a framework for deploying LSTM models in real-time for high-rate state estimation, 2) an experimental validation of LSTMs running on a real-time computing system.
more »
« less
Deterministic and low-latency time-series forecasting of nonstationary signals
Hard real-time time-series forecasting of temporal signals has applications in the field of structural health monitoring and control. Particularly for structures experiencing high-rate dynamics, examples of such structures include hypersonic vehicles and space infrastructure. This work reports on the development of a coupled softwarehardware algorithm for deterministic and low-latency online time-series forecasting of structural vibrations that is capable of learning over nonstationary events and adjusting its forecasted signal following an event. The proposed algorithm uses an ensemble of multi-layer perceptrons trained offline on experimental and simulated data relevant to the structure. A dynamic attention layer is then used to selectively scale the outputs of the individual models to obtain a unified forecasted signal over the considered prediction horizon. The scalar values of the dynamic attention layer are continuously updated by quantifying the error between the signal’s measured value and its previously predicted value. Deterministic timing of the proposed algorithm is achieved through its deployment on a field programmable gate array. The performance of the proposed algorithm is validated on experimental data taken on a test structure. Results demonstrate that a total system latency of 25.76 µs can be achieved on a Kintex-7 70T FPGA with sufficient accuracy for the considered system.
more »
« less
- PAR ID:
- 10340314
- Editor(s):
- Han, Jae-Hung; Shahab, Shima; Yang, Jinkyu
- Date Published:
- Journal Name:
- Active and Passive Smart Structures and Integrated Systems XVI. SPIE, Apr. 2022
- Page Range / eLocation ID:
- 83
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Structures operating in high-rate dynamic environments, such as hypersonic vehicles, orbital space infrastructure, and blast mitigation systems, require microsecond (μs) decision-making. Advances in real-time sensing, edge-computing, and high-bandwidth computer memory are enabling emerging technologies such as High-rate structural health monitoring (HR-SHM) to become more feasible. Due to the time restrictions such systems operate under, a target of 1 millisecond (ms) from event detection to decision-making is set at the goal to enable HR-SHM. With minimizing latency in mind, a data-driven method that relies on time-series measurements processed in real-time to infer the state of the structure is investigated in this preliminary work. A methodology for deploying LSTM-based state estimators for structures using subsampled time-series vibration data is presented. The proposed estimator is deployed to an embedded real-time device and the achieved accuracy along with system timing are discussed. The proposed approach has shown potential for high-rate state estimation as it provides sufficient accuracy for the considered structure while a time-step of 2.5 ms is achieved. The Contributions of this work are twofold: 1) a framework for deploying LSTM models in real-time for high-rate state estimation, 2) an experimental validation of LSTMs running on a real-time computing system.more » « less
-
Accurate long-term electricity load forecasting is critical for energy planning, infrastructure development, and risk management, especially under increasing uncertainty from climate and economic shifts. This study proposes a multi-resolution probabilistic load forecasting framework that leverages temporal hierarchies to generate coherent forecasts at hourly, daily, monthly, and yearly levels. The model integrates climate and economic indicators and employs tailored forecasting techniques at each resolution, including XGBoost and ARIMAX. Initially incoherent forecasts across time scales are reconciled using advanced methods such as Ordinary Least Squares (OLS), Weighted Least Squares with Series Variance Scaling (WLS_V), and Structural Scaling (WLS_S) to ensure consistency. Using historical data from Alberta, Canada, the proposed approach improves the accuracy of deterministic forecasts and enhances the reliability of probabilistic forecasts, particularly when using the OLS reconciliation method. These results highlight the value of temporal hierarchy structures in producing high-resolution long-horizon load forecasts, providing actionable insights for utilities and policymakers involved in long-term energy planning and system optimization.more » « less
-
Abstract In this paper, a method for real-time forecasting of the dynamics of structures experiencing nonstationary inputs is described. This is presented as time series predictions across different timescales. The target applications include hypersonic vehicles, space launch systems, real-time prognostics, and monitoring of high-rate and energetic systems. This work presents numerical analysis and experimental results for the real-time implementation of a Fast Fourier Transform (FFT)-based approach for time series forecasting. For this preliminary study, a testbench structure that consists of a cantilever beam subjected to nonstationary inputs is used to generate experimental data. First, the data is de-trended, then the time series data is transferred into the frequency domain, and measures for frequency, amplitude, and phase are obtained. Thereafter, select frequency components are collected, transformed back to the time domain, recombined, and then the trend in the data is restored. Finally, the recombined signals are propagated into the future to the selected prediction horizon. This preliminary time series forecasting work is done offline using pre-recorded experimental data, and the FFT-based approach is implemented in a rolling window configuration. Here learning windows of 0.1, 0.5, and 1 s are considered with different computation times simulated. Results demonstrate that the proposed FFT-based approach can maintain a constant prediction horizon at 1 s with sufficient accuracy for the considered system. The performance of the system is quantified using a variety of metrics. Computational speed and prediction accuracy as a function of training time and learning window lengths are examined in this work. The algorithm configuration with the shortest learning window (0.1 s) is shown to converge faster following the nonstationary when compared to algorithm configuration with longer learning windows.more » « less
-
In the rapidly evolving landscape of 5G technology, safeguarding Radio Frequency (RF) environments against sophisticated intrusions is paramount, especially in dynamic spectrum access and management. This paper presents an enhanced experimental model that integrates a self-attention mechanism with a Recurrent Neural Network (RNN)-based autoencoder for the detection of anomalous spectral activities in 5G networks at the waveform level. Our approach, grounded in time-series analysis, processes in-phase and quadrature (I/Q) samples to identify irregularities that could indicate potential jamming attacks. The model's architecture, augmented with a self-attention layer, extends the capabilities of RNN autoen-coders, enabling a more nuanced understanding of temporal dependencies and contextual relationships within the RF spectrum. Utilizing a simulated 5G Radio Access Network (RAN) test-bed constructed with srsRAN 5G and Software Defined Radios (SDRs), we generated a comprehensive stream of data that reflects real-world RF spectrum conditions and attack scenarios. The model is trained to reconstruct standard signal behavior, establishing a normative baseline against which deviations, indicative of security threats, are identified. The proposed architecture is designed to balance between detection precision and computational efficiency, so the LSTM network, enriched with self-attention, continues to optimize for minimal execution latency and power consumption. Conducted on a real-world SDR-based testbed, our results demonstrate the model's improved performance and accuracy in threat detection.more » « less
An official website of the United States government

