skip to main content

This content will become publicly available on June 1, 2023

Title: The shifting mosaic of ice-wedge degradation and stabilization in response to infrastructure and climate change, Prudhoe Bay Oilfield, Alaska, USA
We studied processes of ice-wedge degradation and stabilization at three sites adjacent to road infrastructure in the Prudhoe Bay Oilfield, Alaska, USA. We examined climatic, environmental, and subsurface conditions and evaluated vulnerability of ice wedges to thermokarst in undisturbed and road-affected areas. Vulnerability of ice wedges strongly depends on the structure and thickness of soil layers above ice wedges, including the active, transient, and intermediate layers. In comparison with the undisturbed area, sites adjacent to the roads had smaller average thicknesses of the protective intermediate layer (4 cm vs. 9 cm), and this layer was absent above almost 60% of ice wedges (vs. ∼45% in undisturbed areas). Despite the strong influence of infrastructure, ice-wedge degradation is a reversible process. Deepening of troughs during ice-wedge degradation leads to a substantial increase in mean annual ground temperatures but not in thaw depths. Thus, stabilization of ice wedges in the areas of cold continuous permafrost can occur despite accumulation of snow and water in the troughs. Although thermokarst is usually more severe in flooded areas, higher plant productivity, more litter, and mineral material (including road dust) accumulating in the troughs contribute to formation of the intermediate layer, which protects ice wedges from further melting.
Authors:
; ;  ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1806213 1820883 1928237 1722572 1832238
Publication Date:
NSF-PAR ID:
10340322
Journal Name:
Arctic Science
Volume:
8
Issue:
2
Page Range or eLocation-ID:
498 to 530
ISSN:
2368-7460
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent excavation in the new CRREL Permafrost Tunnel in Fox, Alaska provides a unique opportunity to study properties of Yedoma — late Pleistocene ice- and organic-rich syngenetic permafrost. Yedoma has been described at numerous sites across Interior Alaska, mainly within the Yukon-Tanana upland. The most comprehensive data on the structure and properties of Yedoma in this area have been obtained in the CRREL Permafrost Tunnel near Fairbanks — one of the most accessible large-scale exposures of Yedoma permafrost on Earth, which became available to researchers in the mid-1960s. Expansion of the new ∼4-m-high and ∼4-m-wide linear excavations, started in 2011 and ongoing, exposes an additional 300 m of well-preserved Yedoma and provides access to sediments deposited over the past 40,000 years, which will allow us to quantify rates and patterns of formation of syngenetic permafrost, depositional history and biogeochemical characteristics of Yedoma, and its response to a warmer climate. In this paper, we present results of detailed cryostratigraphic studies in the Tunnel and adjacent area. Data from our study include ground-ice content, the stable water isotope composition of the variety of ground-ice bodies, and radiocarbon age dates. Based on cryostratigraphic mapping of the Tunnel and results of drilling above and inside themore »Tunnel, six main cryostratigraphic units have been distinguished: 1) active layer; 2) modern intermediate layer (ice-rich silt); 3) relatively ice-poor Yedoma silt reworked by thermal erosion and thermokarst during the Holocene; 4) ice-rich late Pleistocene Yedoma silt with large ice wedges; 5) relatively ice-poor fluvial gravel; and 6) ice-poor bedrock. Our studies reveal significant differences in cryostratigraphy of the new and old CRREL Permafrost Tunnel facilities. Original syngenetic permafrost in the new Tunnel has been better preserved and less affected by erosional events during the period of Yedoma formation, although numerous features (e.g., bodies of thermokarst-cave ice, thaw unconformities, buried gullies) indicate the original Yedoma silt in the recently excavated sections was also reworked to some extent by thermokarst and thermal erosion during the late Pleistocene and Holocene.« less
  2. Ice-wedge thermokarst has played an important role in permafrost evolution, and numerous cycles of ice-wedge formation/degradation have occurred through the Quaternary history. Studies of ice-wedge degradation help to explain processes of past ice-wedge thermokarst and predict its future consequences. We developed a conceptual model of ice-wedge degradation/stabilization, which is based on the dynamics of the intermediate layer of the upper permafrost. This model explains high resilience of ice-wedge systems and low probability of formation of large thaw lakes in the continuous permafrost zone. Absence of the intermediate layer at the time of yedoma accumulation and increased precipitation caused very high activity of thaw-lake formation during the Pleistocene/Holocene transition.
  3. Environmental impact assessments for new Arctic infrastructure do not adequately consider the likely long-term cumulative effects of climate change and infrastructure to landforms and vegetation in areas with ice-rich permafrost, due in part to lack of long-term environmental studies that monitor changes after the infrastructure is built. This case study examines long-term (1949–2020) climate- and road-related changes in a network of ice-wedge polygons, Prudhoe Bay Oilfield, Alaska. We studied four trajectories of change along a heavily traveled road and a relatively remote site. During 20 years prior to the oilfield development, the climate and landscapes changed very little. During 50 years after development, climate-related changes included increased numbers of thermokarst ponds, changes to ice-wedge-polygon morphology, snow distribution, thaw depths, dominant vegetation types, and shrub abundance. Road dust strongly affected plant-community structure and composition, particularly small forbs, mosses, and lichens. Flooding increased permafrost degradation, polygon center-trough elevation contrasts, and vegetation productivity. It was not possible to isolate infrastructure impacts from climate impacts, but the combined datasets provide unique insights into the rate and extent of ecological disturbances associated with infrastructure-affected landscapes under decades of climate warming. We conclude with recommendations for future cumulative impact assessments in areas with ice-rich permafrost.
  4. In response to increasing Arctic temperatures, ice-rich permafrost landscapes are undergoing rapid changes. In permafrost lowlands, polygonal ice wedges are especially prone to degradation. Melting of ice wedges results in deepening troughs and the transition from low-centered to high-centered ice-wedge polygons. This process has important implications for surface hydrology, as the connectivity of such troughs determines the rate of drainage for these lowland landscapes. In this study, we present a comprehensive, modular, and highly automated workflow to extract, to represent, and to analyze remotely sensed ice-wedge polygonal trough networks as a graph (i.e., network structure). With computer vision methods, we efficiently extract the trough locations as well as their geomorphometric information on trough depth and width from high-resolution digital elevation models and link these data within the graph. Further, we present and discuss the benefits of graph analysis algorithms for characterizing the erosional development of such thaw-affected landscapes. Based on our graph analysis, we show how thaw subsidence has progressed between 2009 and 2019 following burning at the Anaktuvuk River fire scar in northern Alaska, USA. We observed a considerable increase in the number of discernible troughs within the study area, while simultaneously the number of disconnected networks decreased frommore »54 small networks in 2009 to only six considerably larger disconnected networks in 2019. On average, the width of the troughs has increased by 13.86%, while the average depth has slightly decreased by 10.31%. Overall, our new automated approach allows for monitoring ice-wedge dynamics in unprecedented spatial detail, while simultaneously reducing the data to quantifiable geometric measures and spatial relationships.« less
  5. Abstract. Infrastructure built on perennially frozen ice-richground relies heavily on thermally stable subsurface conditions. Climate-warming-induced deepening of ground thaw puts such infrastructure at risk offailure. For better assessing the risk of large-scale future damage to Arcticinfrastructure, improved strategies for model-based approaches are urgentlyneeded. We used the laterally coupled 1D heat conduction model CryoGrid3to simulate permafrost degradation affected by linear infrastructure. Wepresent a case study of a gravel road built on continuous permafrost (Daltonhighway, Alaska) and forced our model under historical and strong futurewarming conditions (following the RCP8.5 scenario). As expected, the presenceof a gravel road in the model leads to higher net heat flux entering theground compared to a reference run without infrastructure and thus a higherrate of thaw. Further, our results suggest that road failure is likely aconsequence of lateral destabilisation due to talik formation in the groundbeside the road rather than a direct consequence of a top-down thawing anddeepening of the active layer below the road centre. In line with previousstudies, we identify enhanced snow accumulation and ponding (both aconsequence of infrastructure presence) as key factors for increased soiltemperatures and road degradation. Using differing horizontal modelresolutions we show that it is possible to capture these key factors andmore »theirimpact on thawing dynamics with a low number of lateral model units,underlining the potential of our model approach for use in pan-Arctic riskassessments. Our results suggest a general two-phase behaviour of permafrost degradation:an initial phase of slow and gradual thaw, followed by a strong increase inthawing rates after the exceedance of a critical ground warming. The timing ofthis transition and the magnitude of thaw rate acceleration differ stronglybetween undisturbed tundra and infrastructure-affected permafrost ground. Ourmodel results suggest that current model-based approaches which do notexplicitly take into account infrastructure in their designs are likely tostrongly underestimate the timing of future Arctic infrastructure failure. By using a laterally coupled 1D model to simulate linearinfrastructure, we infer results in line with outcomes from more complex 2Dand 3D models, but our model's computational efficiency allows us to accountfor long-term climate change impacts on infrastructure from permafrostdegradation. Our model simulations underline that it is crucial to considerclimate warming when planning and constructing infrastructure on permafrost asa transition from a stable to a highly unstable state can well occur withinthe service lifetime (about 30 years) of such a construction. Such atransition can even be triggered in the coming decade by climate change forinfrastructure built on high northern latitude continuous permafrost thatdisplays cold and relatively stable conditions today.« less