skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: CollisionIK: A Per-Instant Pose Optimization Method for Generating Robot Motions with Environment Collision Avoidance
In this work, we present a per-instant pose optimization method that can generate configurations that achieve specified pose or motion objectives as best as possible over a sequence of solutions, while also simultaneously avoiding collisions with static or dynamic obstacles in the environment. We cast our method as a weighted sum non-linear constrained optimization-based IK problem where each term in the objective function encodes a particular pose objective. We demonstrate how to effectively incorporate environment collision avoidance as a single term in this multi-objective, optimization-based IK structure, and provide solutions for how to spatially represent and organize external environments such that data can be efficiently passed to a real-time, performance-critical optimization loop. We demonstrate the effectiveness of our method by comparing it to various state-of-the-art methods in a testbed of simulation experiments and discuss the implications of our work based on our results.  more » « less
Award ID(s):
1830242
PAR ID:
10340410
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE International Conference on Robotics and Automation (ICRA)
Page Range / eLocation ID:
9995 to 10001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pose estimation is a basic module in many robot manipulation pipelines. Estimating the pose of objects in the environment can be useful for grasping, motion planning, or manipulation. However, current state-of-the-art methods for pose estimation either rely on large annotated training sets or simulated data. Further, the long training times for these methods prohibit quick interaction with novel objects. To address these issues, we introduce a novel method for zero-shot object pose estimation in clutter. Our approach uses a hypothesis generation and scoring framework, with a focus on learning a scoring function that generalizes to objects not used for training. We achieve zero-shot generalization by rating hypotheses as a function of unordered point differences. We evaluate our method on challenging datasets with both textured and untextured objects in cluttered scenes and demonstrate that our method significantly outperforms previous methods on this task. We also demonstrate how our system can be used by quickly scanning and building a model of a novel object, which can immediately be used by our method for pose estimation. Our work allows users to estimate the pose of novel objects without requiring any retraining. 
    more » « less
  2. Finding diverse and representative Pareto solutions from the Pareto front is a key challenge in multi-objective optimization (MOO). In this work, we propose a novel gradient-based algorithm for profiling Pareto front by using Stein variational gradient descent (SVGD). We also provide a counterpart of our method based on Langevin dynamics. Our methods iteratively update a set of points in a parallel fashion to push them towards the Pareto front using multiple gradient descent, while encouraging the diversity between the particles by using the repulsive force mechanism in SVGD, or diffusion noise in Langevin dynamics. Compared with existing gradient-based methods that require predefined preference functions, our method can work efficiently in high dimensional problems, and can obtain more diverse solutions evenly distributed in the Pareto front. Moreover, our methods are theoretically guaranteed to converge to the Pareto front. We demonstrate the effectiveness of our method, especially the SVGD algorithm, through extensive experiments, showing its superiority over existing gradient-based algorithms. 
    more » « less
  3. Inverse kinematics (IK) is an important problem in robot control and motion planning; however, the nonlinearity of the map from joint angles to robot configurations makes the problem nonconvex. In this paper, we propose an inverse kinematics solver that works in the space of rotation matrices of the link reference frames rather than joint angles. To overcome the nonlinearity of the manifold of rotation matrices $\mathbf{SO}(3)$, we propose a semidefinite programming (SDP) relaxation of the kinematic constraints followed by a fixed-trace rank minimization via maximization of a convex function. Along the way, we show that the feasible set of an IK problem is exactly the intersection of a convex set and fixed-trace rank-1 matrices. Thanks to the use of matrices with fixed trace, our algorithm to obtain rank-1 solutions has guaranteed local convergence. Unlike some traditional solvers, our method does not require an initial guess, and can be applied to robots with closed kinematic chains without ad-hoc modifications such as splitting the kinematic chain. Compared to other work that performs SDP relaxation for IK problems, our formulation is simpler, and uses variables with smaller sizes. We validate our approach via simulations on a closed kinematic chain constituted by two robotic arms holding a box, comparing against a standard IK method. 
    more » « less
  4. As objectives increase in many-objective optimization (MaOO), often so do the number of non-dominated solutions, potentially resulting in solution sets with thousands of non-dominated solutions. Such a larger final solution set increases difficulty in visualization and decision-making. This raises the question: how can we reduce this large solution set to a more manageable size? In this paper, we present a new objective archive management (OAM) strategy that performs post-optimization solution set reduction to help the end-user make an informed decision without requiring expert knowledge of the field of MaOO. We create separate archives for each objective, selecting solutions based on their fitness as well as diversity criteria in both the objective and variable space. We can then look for solutions that belong to more than one archive to create a reduced final solution set. We apply OAM to NSGA-II and compare our approach to environmental selection finding that the obtained solution set has better hypervolume and spread. Furthermore, we compare results found by OAM-NSGA-II to NSGA-III and get competitive results. Additionally, we apply OAM to reduce the solutions found by NSGA-III and find that the selected solutions perform well in terms of overall fitness, successfully reducing the number of solutions. 
    more » « less
  5. null (Ed.)
    Most real-world 3D sensors such as LiDARs perform fixed scans of the entire environment, while being decoupled from the recognition system that processes the sensor data. In this work, we propose a method for 3D object recognition using light curtains, a resource-efficient controllable sensor that measures depth at user-specified locations in the environment. Crucially, we propose using prediction uncertainty of a deep learning based 3D point cloud detector to guide active perception. Given a neural network's uncertainty, we derive an optimization objective to place light curtains using the principle of maximizing information gain. Then, we develop a novel and efficient optimization algorithm to maximize this objective by encoding the physical constraints of the device into a constraint graph and optimizing with dynamic programming. We show how a 3D detector can be trained to detect objects in a scene by sequentially placing uncertainty-guided light curtains to successively improve detection accuracy. 
    more » « less