Recently, eye-tracking analysis for finding the cognitive load and stress while problem-solving on the whiteboard during a technical interview is finding its way in software engineering society. However, there is no empirical study on analyzing how much the interview setting characteristics affect the eye-movement measurements. Without knowing that, the results of a research on eye-movement measurements analysis for stress detection will not be reliable. In this paper, we analyzed the eye-movements of 11 participants in two interview settings, one on the whiteboard and the other on the paper, to find out if the characteristics of the interview settings affect the analysis of participants' stress. To this end, we applied 7 Machine Learning classification algorithms on three different labeling strategies of the data to suggest researchers of the domain a useful practice of checking the reliability of the eye-measurements before reporting any results.
This content will become publicly available on April 1, 2023
Eye tracking: empirical foundations for a minimal reporting guideline
Abstract In this paper, we present a review of how the various aspects of any study using an eye tracker (such as the instrument, methodology, environment, participant, etc.) affect the quality of the recorded eye-tracking data and the obtained eye-movement and gaze measures. We take this review to represent the empirical foundation for reporting guidelines of any study involving an eye tracker. We compare this empirical foundation to five existing reporting guidelines and to a database of 207 published eye-tracking studies. We find that reporting guidelines vary substantially and do not match with actual reporting practices. We end by deriving a minimal, flexible reporting guideline based on empirical research (Section “An empirically based minimal reporting guideline”).
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Award ID(s):
- 1855756
- Publication Date:
- NSF-PAR ID:
- 10340701
- Journal Name:
- Behavior Research Methods
- ISSN:
- 1554-3528
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We introduce WebGazer, an online eye tracker that uses common webcams already present in laptops and mobile devices to infer the eye-gaze locations of web visitors on a page in real time. The eye tracking model self-calibrates by watching web visitors interact with the web page and trains a mapping between features of the eye and positions on the screen. This approach aims to provide a natural experience to everyday users that is not restricted to laboratories and highly controlled user studies. WebGazer has two key components: a pupil detector that can be combined with any eye detection library, and a gaze estimator using regression analysis informed by user interactions. We perform a large remote online study and a small in-person study to evaluate WebGazer. The findings show that WebGazer can learn from user interactions and that its accuracy is sufficient for approximating the user's gaze. As part of this paper, we release the first eye tracking library that can be easily integrated in any website for real-time gaze interactions, usability studies, or web research.
-
The Blue Whale Challenge (BWC) is an online viral game ” that allegedly encourages youth and young adults towards self harming behaviors that could eventually lead to suicide. The BWC can be situated within a larger phenomenon of viral online self harm challenges, which may be propagated through both social media and news sources. Research has established that suicide is a global public health issue that is known to be influenced by media reporting. Violation of safe messaging guidelines has be en shown to increase imitative suicides, particularly in youth and young adults. Given the confirmed effects of news media reporting, we analyzed 150 digital newspaper articles reporting on the BWC to assess whether they adhered to suicide prevention safe messaging guidelines. Overall, 81% of the articles violated at least one contagion related guideline, most commonly normalizing suicide, discussing means of suicide, and sensationalizing. Even though the majority (91%) of the articles adhered to at least o ne health promotion guideline, such as emphasizing prevention, the articles did not follow these guidelines on a deep and comprehensive level. Through thematic analysis, we also found evidence of potential misinformation in reporting, where the articles un equivocally attributed many suicides to themore »
-
We introduce SearchGazer, a web-based eye tracker for remote web search studies using common webcams already present in laptops and some desktop computers. SearchGazer is a pure JavaScript library that infers the gaze behavior of searchers in real time. The eye tracking model self-calibrates by watching searchers interact with the search pages and trains a mapping of eye features to gaze locations and search page elements on the screen. Contrary to typical eye tracking studies in information retrieval, this approach does not require the purchase of any additional specialized equipment, and can be done remotely in a user's natural environment, leading to cheaper and easier visual attention studies. While SearchGazer is not intended to be as accurate as specialized eye trackers, it is able to replicate many of the research findings of three seminal information retrieval papers: two that used eye tracking devices, and one that used the mouse cursor as a restricted focus viewer. Charts and heatmaps from those original papers are plotted side-by-side with SearchGazer results. While the main results are similar, there are some notable differences, which we hypothesize derive from improvements in the latest ranking technologies used by current versions of search engines and diligence bymore »
-
Blascheck, Tanja ; Bradshaw, Jessica ; Vrzakova, Hana (Ed.)Virtual Reality (VR) technology has advanced to include eye-tracking, allowing novel research, such as investigating how our visual system coordinates eye movements with changes in perceptual depth. The purpose of this study was to examine whether eye tracking could track perceptual depth changes during a visual discrimination task. We derived two depth-dependent variables from eye tracker data: eye vergence angle (EVA) and interpupillary distance (IPD). As hypothesized, our results revealed that shifting gaze from near-to-far depth significantly decreased EVA and increased IPD, while the opposite pattern was observed while shifting from far-to-near. Importantly, the amount of change in these variables tracked closely with relative changes in perceptual depth, and supported the hypothesis that eye tracker data may be used to infer real-time changes in perceptual depth in VR. Our method could be used as a new tool to adaptively render information based on depth and improve the VR user experience.