skip to main content


Title: Electron spectra for twisted electron collisions
Abstract Ionization collisions have important consequences in many physical phenomena, and the mechanism that leads to ionization is not universal. Double differential cross sections (DDCSs) are often used to identify ionization mechanisms because they exhibit features that distinguish close collisions from grazing collisions. In the angular DDCS, a sharp peak indicates ionization through a close binary collision, while a broad angular distribution points to a grazing collision. In the DDCS energy spectrum, electrons ejected through a binary encounter collision result in a peak at an energy predicted from momentum conservation. These insights into ionization processes are well-established for plane wave projectiles. However, the recent development of sculpted particle wave packets reopens the question of how ionization occurs for these new particle wave forms. We present theoretical DDCSs for (e, 2e) ionization of atomic hydrogen for electron vortex projectiles. Our results predict that the ionization mechanism for vortex projectiles is similar to that of non-vortex projectiles, but that the projectile’s momentum uncertainty causes noticeable changes to the shape and magnitude of the vortex DDCSs. Specifically, there is a broadening and splitting of the angular DDCS peak for vortex projectiles, and an increase in the cross section for high energy ejected electrons.  more » « less
Award ID(s):
1912093
NSF-PAR ID:
10340713
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Physics B: Atomic, Molecular and Optical Physics
Volume:
54
Issue:
23
ISSN:
0953-4075
Page Range / eLocation ID:
235204
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the last decade, it has become clear that for heavy ion projectiles, the projectile’s transverse coherence length must be considered in theoretical models. While traditional scattering theory often assumes that the projectile has an infinite coherence length, many studies have demonstrated that the effect of projectile coherence cannot be ignored, even when the projectile-target interaction is within the perturbative regime. This has led to a surge in studies that examine the effects of the projectile’s coherence length. Heavy-ion collisions are particularly well-suited to this because the projectile’s momentum can be large, leading to a small deBroglie wavelength. In contrast, electron projectiles that have larger deBroglie wavelengths and coherence effects can usually be safely ignored. However, the recent demonstration of sculpted electron wave packets opens the door to studying projectile coherence effects in electron-impact collisions. We report here theoretical triple differential cross-sections (TDCSs) for the electron-impact ionization of helium using Bessel and Laguerre-Gauss projectiles. We show that the projectile’s transverse coherence length affects the shape and magnitude of the TDCSs and that the atomic target’s position within the projectile beam plays a significant role in the probability of ionization. We also demonstrate that projectiles with large coherence lengths result in cross-sections that more closely resemble their fully coherent counterparts.

     
    more » « less
  2. State-to-state rotational energy transfer in collisions of ground ro-vibrational state 13 CO molecules with N 2 molecules has been studied using the crossed molecular beam method under kinematically equivalent conditions used for 13 CO + CO rotationally inelastic scattering described in a previously published report (Sun et al. , Science , 2020, 369 , 307–309). The collisionally excited 13 CO molecule products are detected by the same (1 + 1′ + 1′′) VUV (Vacuum Ultra-Violet) resonance enhanced multiphoton ionization scheme coupled with velocity map ion imaging. We present differential cross sections and scattering angle resolved rotational angular momentum alignment moments extracted from experimentally measured 13 CO + N 2 scattering images and compare them with theoretical predictions from quasi-classical trajectories (QCT) on a newly calculated 13 CO–N 2 potential energy surface (PES). Good agreement between experiment and theory is found, which confirms the accuracy of the 13 CO–N 2 potential energy surface for the 1460 cm −1 collision energy studied by experiment. Experimental results for 13 CO + N 2 are compared with those for 13 CO + CO collisions. The angle-resolved product rotational angular momentum alignment moments for the two scattering systems are very similar, which indicates that the collision induced alignment dynamics observed for both systems are dominated by a hard-shell nature. However, compared to the 13 CO + CO measurements, the primary rainbow maximum in the DCSs for 13 CO + N 2 is peaked consistently at more backward scattering angles and the secondary maximum becomes much less obvious, implying that the 13 CO–N 2 PES is less anisotropic. In addition, a forward scattering component with high rotational excitation seen for 13 CO + CO does not appear for 13 CO–N 2 in the experiment and is not predicted by QCT theory. Some of these differences in collision dynamics behaviour can be predicted by a comparison between the properties of the PESs for the two systems. More specific behaviour is also predicted from analysis of the dependence on the relative collision geometry of 13 CO + N 2 trajectories compared to 13 CO + CO trajectories, which shows the special ‘do-si-do’ pathway invoked for 13 CO + CO is not effective for 13 CO + N 2 collisions. 
    more » « less
  3. null (Ed.)
    Radiative double-electron capture (RDEC), in which two-electron capture is accompanied by simultaneousemission of a single photon, was investigated for fully stripped and one-electron projectiles colliding withgaseous and thin-foil targets. RDEC can be considered the inverse of double photoionization by a single photon.For the gaseous targets, measurements were done for 2.11 MeV/uF9+and F8+ions interacting with N2and Ne,while for the thin-foil target the measurements were done for 2.11 MeV/uF9+and F8+and 2.19 MeV/uO8+andO7+ions striking thin C targets. Reports on this work were already published separately in shorter accounts by LaMantiaet al.[Phys. Rev. Lett.124, 133401 (2020)for the gas targets andPhys.Rev.A102, 060801(R) (2020)forthe thin-foil targets]. The gas targets were studied under single-collision conditions, while the foil targets sufferedunavoidable multiple collisions. The measurements were carried out by detecting x-ray emission from the targetat 90◦to the beam direction in coincidence with outgoing ions undergoing double, single, and, in the caseof the foil targets, no charge change inside the target. Striking differences between the gaseous and foil targetswere found from these measurements, with RDEC for the gaseous targets occurring only in coincidence with q-2outgoing projectiles as expected, while RDEC for the foil targets was seen in each of the outgoing q-2, q-1, and nocharge-change states. The no charge-change result was totally unexpected. The cross sections for RDEC for thefully stripped ions on gas targets were found to be about six times larger than those for the one-electron projec-tiles. For the foil targets, the RDEC cross sections for the fully stripped and one-electron projectiles differ some-what from one another but not to the the extent they did for the gas targets. In this work the cross sections for allof the projectiles for the foil targets were adjusted due to the target contaminant background from potassium andcalcium atoms that existed in the spectra. Also, the cross sections for the incident one-electron projectiles weremodified due to a correction for the fraction of these ions that becomes fully stripped in passage through the foil.These differences are attributed to the effects of the multiple collisions that occur for the foil targets. The differ-ential cross sections at 90◦determined for each of the projectiles interacting with each of the targets are comparedwith each other and with the previous measurements. To the extent that the cross sections follow a sin2θdepen-dence, the total cross sections are compared with theoretical calculations [E. A. Mistonova and O. Yu. Andreev,Phys. Rev. A87, 034702 (2013)], for which the agreement is poor, with the measured cross section exceedingthe predicted ones by about an order of magnitude. Possible reasons for this discrepancy will be discussed. 
    more » « less
  4. Abstract

    The nature and radial evolution of solar wind electrons in the suprathermal energy range are studied. A wave–particle interaction tensor and a Fokker–Planck Coulomb collision operator are introduced into the kinetic transport equation describing electron collisions and resonant interactions with whistler waves. The diffusion tensor includes diagonal and off-diagonal terms, and the Coulomb collision operator applies to arbitrary electron velocities describing collisions with both background protons and electrons. The background proton and electron densities and temperatures are based on previous turbulence models that mediate the supersonic solar wind. The electron velocity distribution functions and electron heat flux are calculated. Comparison and analysis of the numerical results with analytical solutions and observations in the near-Sun region are made. The numerical results reproduce well the creation of the sunward electron deficit observed in the near-Sun region. The deficit of the electron velocity distribution function below the core Maxwellian fit at low velocities results from Coulomb collisions, and the excess part above the core Maxwellian fit at high velocities is determined by strong wave–particle interactions.

     
    more » « less
  5. Context. Since the discovery of exoplanetary systems, questions have been raised as to the sub-stellar companions that can survive encounters with their host star, and how this interaction may affect the internal structure and evolution of the hosting star, and particularly its surface chemical composition. Aims. We study whether the engulfment of a brown dwarf (BD) by a solar-like main-sequence (MS) star can significantly alter the structure of the star and the Li content on its surface. Methods. We performed 3D smoothed particle hydrodynamics simulations of the engulfment of a BD with masses 0.01 and 0.019 M ⊙ , on an MS star of 1 M ⊙ and solar composition, in three different scenarios: a head-on collision, a grazing collision with an impact parameter η  = 0.5  R ⊙ , and a merger. We studied the dynamics of the interaction in detail, and the relevance of the type of interaction and the mass of the BD on the final fate of the sub-stellar object and the host star in terms of mass loss of the system, angular momentum transfer, and changes in the Li abundance on the surface of the host star. Results. In all the studied scenarios, most of the BD mass is diluted in the denser region of the MS star. Only in the merger scenario a significant fraction (∼40%) of the BD material would remain in the outer layers. We find a clear increase in the surface rotational velocity of the host star after the interaction, ranging between 25 km s −1 (grazing collision) to 50 km s −1 (merger). We also find a significant mass loss from the system (in the range 10 −4  − 10 −3   M ⊙ ) due to the engulfment, which in the case of the merger may form a circumstellar disk-like structure. Assuming that neither the depth of the convective envelope of the host star nor its mass content are modified during the interaction, a small change in the surface Li abundance in the head-on and grazing collisions is found. However, in the merger we find large Li enhancements, by factors of 20 − 30, depending on the BD mass. Some of these features could be detected observationally in the host star, provided they remained for a long enough time. Conclusions. In our 3D simulations, a sizable fraction of the BD survives long enough to be mixed with the inner core of the MS star. This is at odds with previous suggestions based on 1D simulations. In some cases the final surface rotational velocity is very high, coupled with enough mass loss that may form a circumstellar disk. Merger scenarios tend to dilute considerably more BD material on the surface of the MS star, which could be detected as a Li-enhancement. The dynamic of the simulated scenarios suggests the development of asymmetries in the structure of the host star that can only be tackled with 3D codes, including the long-term evolution of the system. 
    more » « less