skip to main content

Title: Electron spectra for twisted electron collisions
Abstract Ionization collisions have important consequences in many physical phenomena, and the mechanism that leads to ionization is not universal. Double differential cross sections (DDCSs) are often used to identify ionization mechanisms because they exhibit features that distinguish close collisions from grazing collisions. In the angular DDCS, a sharp peak indicates ionization through a close binary collision, while a broad angular distribution points to a grazing collision. In the DDCS energy spectrum, electrons ejected through a binary encounter collision result in a peak at an energy predicted from momentum conservation. These insights into ionization processes are well-established for plane wave projectiles. However, the recent development of sculpted particle wave packets reopens the question of how ionization occurs for these new particle wave forms. We present theoretical DDCSs for (e, 2e) ionization of atomic hydrogen for electron vortex projectiles. Our results predict that the ionization mechanism for vortex projectiles is similar to that of non-vortex projectiles, but that the projectile’s momentum uncertainty causes noticeable changes to the shape and magnitude of the vortex DDCSs. Specifically, there is a broadening and splitting of the angular DDCS peak for vortex projectiles, and an increase in the cross section for high energy ejected electrons.
Authors:
;
Award ID(s):
1912093
Publication Date:
NSF-PAR ID:
10340713
Journal Name:
Journal of Physics B: Atomic, Molecular and Optical Physics
Volume:
54
Issue:
23
Page Range or eLocation-ID:
235204
ISSN:
0953-4075
Sponsoring Org:
National Science Foundation
More Like this
  1. Radiative double-electron capture (RDEC), in which two-electron capture is accompanied by simultaneousemission of a single photon, was investigated for fully stripped and one-electron projectiles colliding withgaseous and thin-foil targets. RDEC can be considered the inverse of double photoionization by a single photon.For the gaseous targets, measurements were done for 2.11 MeV/uF9+and F8+ions interacting with N2and Ne,while for the thin-foil target the measurements were done for 2.11 MeV/uF9+and F8+and 2.19 MeV/uO8+andO7+ions striking thin C targets. Reports on this work were already published separately in shorter accounts by LaMantiaet al.[Phys. Rev. Lett.124, 133401 (2020)for the gas targets andPhys.Rev.A102, 060801(R) (2020)forthe thin-foil targets]. The gas targets were studied under single-collision conditions, while the foil targets sufferedunavoidable multiple collisions. The measurements were carried out by detecting x-ray emission from the targetat 90◦to the beam direction in coincidence with outgoing ions undergoing double, single, and, in the caseof the foil targets, no charge change inside the target. Striking differences between the gaseous and foil targetswere found from these measurements, with RDEC for the gaseous targets occurring only in coincidence with q-2outgoing projectiles as expected, while RDEC for the foil targets was seen in each of the outgoing q-2, q-1, and nocharge-change states. The no charge-changemore »result was totally unexpected. The cross sections for RDEC for thefully stripped ions on gas targets were found to be about six times larger than those for the one-electron projec-tiles. For the foil targets, the RDEC cross sections for the fully stripped and one-electron projectiles differ some-what from one another but not to the the extent they did for the gas targets. In this work the cross sections for allof the projectiles for the foil targets were adjusted due to the target contaminant background from potassium andcalcium atoms that existed in the spectra. Also, the cross sections for the incident one-electron projectiles weremodified due to a correction for the fraction of these ions that becomes fully stripped in passage through the foil.These differences are attributed to the effects of the multiple collisions that occur for the foil targets. The differ-ential cross sections at 90◦determined for each of the projectiles interacting with each of the targets are comparedwith each other and with the previous measurements. To the extent that the cross sections follow a sin2θdepen-dence, the total cross sections are compared with theoretical calculations [E. A. Mistonova and O. Yu. Andreev,Phys. Rev. A87, 034702 (2013)], for which the agreement is poor, with the measured cross section exceedingthe predicted ones by about an order of magnitude. Possible reasons for this discrepancy will be discussed.« less
  2. Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at  = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K.more »The spectral peaks for VB = 2.8 and 3.0 V both occur around  = 1550 nm (h = 0.75 eV), so blue-shifted relative to the peak of the “ideal”, bulk InGaAs emission spectrum shown in Fig. 1(b) [5]. These results are consistent with the model displayed in Fig. 1(c), whereby the broad emission peak is attributed to the radiative recombination between electrons accumulated on the emitter side, and holes generated on the emitter side by interband tunneling with current density Jinter. The blue-shifted main peak is attributed to the quantum-size effect on the emitter side, which creates a radiative recombination rate RN,2 comparable to the band-edge cross-gap rate RN,1. Further support for this model is provided by the shorter wavelength and weaker emission peak shown in Fig. 1(b) around = 1148 nm. Our quantum mechanical calculations attribute this to radiative recombination RR,3 in the RTD quantum well between the electron ground-state level E1,e, and the hole level E1,h. To further test the model and estimate quantum efficiencies, we conducted optical power measurements using a large-area Ge photodiode located ≈3 mm away from the RTD pinhole, and having spectral response between 800 and 1800 nm with a peak responsivity of ≈0.85 A/W at  =1550 nm. Simultaneous I-V and L-V plots were obtained and are plotted in Fig. 2(a) with positive bias on the top contact (emitter on the bottom). The I-V curve displays a pronounced NDR region having a current peak-to-valley current ratio of 10.7 (typical for In0.53Ga0.47As RTDs). The external quantum efficiency (EQE) was calculated from EQE = e∙IP/(∙IE∙h) where IP is the photodiode dc current and IE the RTD current. The plot of EQE is shown in Fig. 2(b) where we see a very rapid rise with VB, but a maximum value (at VB= 3.0 V) of only ≈2×10-5. To extract the internal quantum efficiency (IQE), we use the expression EQE= c ∙i ∙r ≡ c∙IQE where ci, and r are the optical-coupling, electrical-injection, and radiative recombination efficiencies, respectively [6]. Our separate optical calculations yield c≈3.4×10-4 (limited primarily by the small pinhole) from which we obtain the curve of IQE plotted in Fig. 2(b) (right-hand scale). The maximum value of IQE (again at VB = 3.0 V) is 6.0%. From the implicit definition of IQE in terms of i and r given above, and the fact that the recombination efficiency in In0.53Ga0.47As is likely limited by Auger scattering, this result for IQE suggests that i might be significantly high. To estimate i, we have used the experimental total current of Fig. 2(a), the Kane two-band model of interband tunneling [7] computed in conjunction with a solution to Poisson’s equation across the entire structure, and a rate-equation model of Auger recombination on the emitter side [6] assuming a free-electron density of 2×1018 cm3. We focus on the high-bias regime above VB = 2.5 V of Fig. 2(a) where most of the interband tunneling should occur in the depletion region on the collector side [Jinter,2 in Fig. 1(c)]. And because of the high-quality of the InGaAs/AlAs heterostructure (very few traps or deep levels), most of the holes should reach the emitter side by some combination of drift, diffusion, and tunneling through the valence-band double barriers (Type-I offset) between InGaAs and AlAs. The computed interband current density Jinter is shown in Fig. 3(a) along with the total current density Jtot. At the maximum Jinter (at VB=3.0 V) of 7.4×102 A/cm2, we get i = Jinter/Jtot = 0.18, which is surprisingly high considering there is no p-type doping in the device. When combined with the Auger-limited r of 0.41 and c ≈ 3.4×10-4, we find a model value of IQE = 7.4% in good agreement with experiment. This leads to the model values for EQE plotted in Fig. 2(b) - also in good agreement with experiment. Finally, we address the high Jinter and consider a possible universal nature of the light-emission mechanism. Fig. 3(b) shows the tunneling probability T according to the Kane two-band model in the three materials, In0.53Ga0.47As, GaAs, and GaN, following our observation of a similar electroluminescence mechanism in GaN/AlN RTDs (due to strong polarization field of wurtzite structures) [8]. The expression is Tinter = (2/9)∙exp[(-2 ∙Ug 2 ∙me)/(2h∙P∙E)], where Ug is the bandgap energy, P is the valence-to-conduction-band momentum matrix element, and E is the electric field. Values for the highest calculated internal E fields for the InGaAs and GaN are also shown, indicating that Tinter in those structures approaches values of ~10-5. As shown, a GaAs RTD would require an internal field of ~6×105 V/cm, which is rarely realized in standard GaAs RTDs, perhaps explaining why there have been few if any reports of room-temperature electroluminescence in the GaAs devices. [1] E.R. Brown,et al., Appl. Phys. Lett., vol. 58, 2291, 1991. [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [2] M. Feiginov et al., Appl. Phys. Lett., 99, 233506, 2011. [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [3] Y. Nishida et al., Nature Sci. Reports, 9, 18125, 2019. [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [4] P. Fakhimi, et al., 2019 DRC Conference Digest. [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018).« less
  3. Abstract The production of $$\pi ^{\pm }$$ π ± , $$\mathrm{K}^{\pm }$$ K ± , $$\mathrm{K}^{0}_{S}$$ K S 0 , $$\mathrm{K}^{*}(892)^{0}$$ K ∗ ( 892 ) 0 , $$\mathrm{p}$$ p , $$\phi (1020)$$ ϕ ( 1020 ) , $$\Lambda $$ Λ , $$\Xi ^{-}$$ Ξ - , $$\Omega ^{-}$$ Ω - , and their antiparticles was measured in inelastic proton–proton (pp) collisions at a center-of-mass energy of $$\sqrt{s}$$ s = 13 TeV at midrapidity ( $$|y|<0.5$$ | y | < 0.5 ) as a function of transverse momentum ( $$p_{\mathrm{T}}$$ p T ) using the ALICE detector at the CERN LHC. Furthermore, the single-particle $$p_{\mathrm{T}}$$ p T distributions of $$\mathrm{K}^{0}_{S}$$ K S 0 , $$\Lambda $$ Λ , and $$\overline{\Lambda }$$ Λ ¯ in inelastic pp collisions at $$\sqrt{s} = 7$$ s = 7  TeV are reported here for the first time. The $$p_{\mathrm{T}}$$ p T distributions are studied at midrapidity within the transverse momentum range $$0\le p_{\mathrm{T}}\le 20$$ 0 ≤ p T ≤ 20 GeV/ c , depending on the particle species. The $$p_{\mathrm{T}}$$ p T spectra, integrated yields, and particle yield ratios are discussed as a function of collision energy and compared with measurements at lower $$\sqrt{s}$$ smore »and with results from various general-purpose QCD-inspired Monte Carlo models. A hardening of the spectra at high $$p_{\mathrm{T}}$$ p T with increasing collision energy is observed, which is similar for all particle species under study. The transverse mass and $$x_{\mathrm{T}}\equiv 2p_{\mathrm{T}}/\sqrt{s}$$ x T ≡ 2 p T / s scaling properties of hadron production are also studied. As the collision energy increases from $$\sqrt{s}$$ s = 7–13 TeV, the yields of non- and single-strange hadrons normalized to the pion yields remain approximately constant as a function of $$\sqrt{s}$$ s , while ratios for multi-strange hadrons indicate enhancements. The $$p_\mathrm{{T}}$$ p T -differential cross sections of $$\pi ^{\pm }$$ π ± , $$\mathrm {K}^{\pm }$$ K ± and $$\mathrm {p}$$ p ( $$\overline{\mathrm{p}}$$ p ¯ ) are compared with next-to-leading order perturbative QCD calculations, which are found to overestimate the cross sections for $$\pi ^{\pm }$$ π ± and $$\mathrm{p}$$ p ( $$\overline{\mathrm{p}}$$ p ¯ ) at high $$p_\mathrm{{T}}$$ p T .« less
  4. Abstract

    We present a global kinetic plasma simulation of an axisymmetric pulsar magnetosphere with self-consistente±pair production. We use the particle-in-cell method and log-spherical coordinates with a grid size 4096 × 4096. This allows us to achieve a high voltage induced by the pulsar rotation and investigate pair creation in a young pulsar far from the death line. We find the following: (1) The energy release ande±creation are strongly concentrated in the thin, Y-shaped current sheet, with a peak localized in a small volume at the Y-point. (2) The Y-point is shifted inward from the light cylinder by ∼15% and “breathes” with a small amplitude. (3) The densee±cloud at the Y-point is in ultrarelativistic rotation, which we call superrotation, because it exceeds corotation with the star. The cloud receives angular momentum flowing from the star along the poloidal magnetic field lines. (4) Gamma-ray emission peaks at the Y-point and is collimated in the azimuthal direction, tangent to the Y-point circle. (5) The separatrix current sheet between the closed magnetosphere and the open magnetic field lines is sustained by the electron backflow from the Y-point cloud. Its thickness is self-regulated to marginal charge starvation. (6) Only a small fraction of dissipation occursmore »in the separatrix inward of the Y-point. A much higher power is released in the equatorial plane, including the Y-point where the created densee±plasma is spun up and intermittently ejected through the nozzle between the two open magnetic fluxes.

    « less
  5. Abstract The formation of clusters at sub-saturation densities, as a result of many-body correlations, constitutes an essential feature for a reliable modelization of the nuclear matter equation of state (EoS). Phenomenological models that make use of energy density functionals (EDFs) offer a convenient approach to account for the presence of these bound states of nucleons when introduced as additional degrees of freedom. However, in these models clusters dissolve, by construction, when the nuclear saturation density is approached from below, revealing inconsistencies with recent findings that evidence the existence of short-range correlations (SRCs) even at larger densities. The idea of this work is to incorporate SRCs in established models for the EoS, in light of the importance of these features for the description of heavy-ion collisions, nuclear structure and in the astrophysical context. Our aim is to describe SRCs at supra-saturation densities by using effective quasi-clusters immersed in dense matter as a surrogate for correlations, in a regime where cluster dissolution is usually predicted in phenomenological models. Within the EDF framework, we explore a novel approach to embed SRCs within a relativistic mean-field model with density dependent couplings through the introduction of suitable in-medium modifications of the cluster properties, in particularmore »their binding energy shifts, which are responsible for describing the cluster dissolution. As a first exploratory step, the example of a quasi-deuteron within the generalized relativistic density functional approach is investigated. The zero temperature case is examined, where the deuteron fraction is given by the density of a boson condensate. For the first time, suitable parameterizations of the cluster mass shift at zero temperature are derived for all baryon densities. They are constrained by experimental results for the effective deuteron fraction in nuclear matter near saturation and by microscopic many-body calculations in the low-density limit. A proper description of well-constrained nuclear matter quantities at saturation is kept through a refit of the nucleon meson coupling strengths. The proposed parameterizations allow to also determine the density dependence of the quasi-deuteron mass fraction at arbitrary isospin asymmetries. The strength of the deuteron-meson couplings is assessed to be of crucial importance. Novel effects on some thermodynamic quantities, such as the matter incompressibility, the symmetry energy and its slope, are finally discerned and discussed. The findings of the present study represent a first step to improve the description of nuclear matter and its EoS at supra-saturation densities in EDFs by considering correlations in an effective way. In a next step, the single-particle momentum distributions in nuclear matter can be explored using proper wave functions of the quasi-deuteron in the medium. The momentum distributions are expected to exhibit a high-momentum tail, as observed in the experimental study of SRCs by nucleon knockout with high-energy electrons. This will be studied in a forthcoming publication with an extensive presentation of the theoretical method and the results.« less