skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Imaging electron angular distributions to assess a full-power petawatt-class laser focus
We present a technique to assess the focal volume of petawatt-class lasers at full power. Our approach exploits quantitative measurement of the angular distribution of electrons born in the focus via ionization of rarefied gas, which are accelerated forward and ejected ponderomotively by the field. We show that a bivariate (θ,φ) angular distribution, which was obtained with image plates, not only enables the peak intensity to be extracted, but also reflects nonideality of the focal-spot intensity distribution. In our prototype demonstration at intensities of a few ×1019 to a few ×1020 W/cm2, an f/10 optic produced a focal spot in the paraxial regime. This allows a planewave parametrization of the peak intensity given by tan θ_c = 2/a_0 (a_0 being the normalized vector potential and θc the minimum ejection angle) to be compared with our measurements. Qualitative agreement was found using an a0 inferred from the pulse energy, pulse duration, and focal spot distribution with a modified parametrization, tan θ_c = 2η/a_0 (η = 2.02+0.26−0.22). This highlights the need for (i) better understanding of intensity degradation due to focal-spot distortions and (ii) more robust modeling of the ejection dynamics. Using single-shot detection of electrons, we showed that while there is significant shot-to-shot variation in the number of electrons ejected at a given angular position, the average distribution scales with the pulse energy in a way that is consistent with that seen with the image plates. Finally, we note that the asymptotic behavior as θ → 0◦ limits the usability of angular measurement. For 800 nm, this limit is at an intensity ∼10^21 W/cm^2.  more » « less
Award ID(s):
2308905 2010392
PAR ID:
10523561
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review A
Volume:
108
Issue:
5
ISSN:
2469-9926
Page Range / eLocation ID:
053101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pilat, Fulvia; Fischer, Wolfram; Saethre, Robert; Anisimov, Petr; Andrian, Ivan (Ed.)
    A large challenge with Plasma Wakefield Acceleration lies in creating a plasma with a profile and length that properly match the electron beam. Using a laser-ionized plasma source provides control in creating an appropriate plasma density ramp. Additionally, using a laser-ionized plasma allows for an accelerator to run at a higher repetition rate. At the Facility for Advanced Accelerator Experimental Tests, at SLAC National Accelerator Laboratory, we ionize hydrogen gas with a 225 mJ, 50 fs, 800 nm laser pulse that passes through an axicon lens, imparting a conical phase on the pulse that produces a focal spot with an intensity distribution described radially by a Bessel function. This paper overviews the diagnostic tests used to characterize and optimize the focal spot along the meter-long focus. In particular, we observe how wavefront aberrations in the laser pulse impact the peak intensity of the focal spot. Furthermore, we discuss the impact of nonlinear effects caused by a 6 mm, CaF2 vacuum window in the laser beam line. 
    more » « less
  2. Spatial distributions of electrons ionized and scattered from ultra-low-pressure gases are proposed and experimentally demonstrated as a method to directly measure the intensity of an ultra-high-intensity laser pulse. Analytic models relating the peak scattered electron energy to the peak laser intensity are derived and compared to paraxial Runge–Kutta simulations highlighting two models suitable for describing electrons scattered from weakly paraxial beams (f#>5) for intensities in the range of 1018−1021 W cm−2. Scattering energies are shown to be dependent on gas species, emphasizing the need for specific gases for given intensity ranges. Direct measurements of the laser intensity at full power of two laser systems are demonstrated, both showing a good agreement between indirect methods of intensity measurement and the proposed method. One experiment exhibited the role of spatial aberrations in the scattered electron distribution, motivating a qualitative study on the effect. We propose the use of convolutional neural networks as a method for extracting quantitative information on the spatial structure of the laser at full power. We believe the presented technique to be a powerful tool that can be immediately implemented in many high-power laser facilities worldwide. 
    more » « less
  3. Ultra-intense laser–matter interactions are often difficult to predict from first principles because of the complexity of plasma processes and the many degrees of freedom relating to the laser and target parameters. An important approach to controlling and optimizing ultra-intense laser interactions involves gathering large datasets and using these data to train statistical and machine learning models. In this paper, we describe experimental efforts to accelerate electrons and protons to ∼MeV energies with this goal in mind. These experiments involve a 1 kHz repetition rate ultra-intense laser system with ∼10 mJ per shot, a peak intensity near 5 × 1018 W/cm2, and a “liquid leaf” target. Improvements to the data acquisition capabilities of this laser system greatly aided this investigation. Generally, we find that the trained models were very effective in controlling the numbers of MeV electrons ejected. The models were less successful at shifting the energy range of ejected electrons. Simultaneous control of the numbers of ∼MeV electrons and the energy range will be the subject of future experimentation using this platform. 
    more » « less
  4. High-intensity pulse-beams are ubiquitous in scientific investigations and industrial applications ranging from the generation of secondary radiation sources (e.g., high harmonic generation, electrons) to material processing (e.g., micromachining, laser-eye surgery). Crucially, pulse-beams can only be controlled to the degree to which they are characterized, necessitating sophisticated measurement techniques. We present a reference-free, full-field, single-shot spatiospectral measurement technique called broadband single-shot ptychography (BBSSP). BBSSP provides the complex wavefront for each spectral and polarization component in an ultrafast pulse-beam and should be applicable across the electromagnetic spectrum. BBSSP will dramatically improve the application and mitigation of spatiospectral pulse-beam structure. 
    more » « less
  5. Abstract Ionization collisions have important consequences in many physical phenomena, and the mechanism that leads to ionization is not universal. Double differential cross sections (DDCSs) are often used to identify ionization mechanisms because they exhibit features that distinguish close collisions from grazing collisions. In the angular DDCS, a sharp peak indicates ionization through a close binary collision, while a broad angular distribution points to a grazing collision. In the DDCS energy spectrum, electrons ejected through a binary encounter collision result in a peak at an energy predicted from momentum conservation. These insights into ionization processes are well-established for plane wave projectiles. However, the recent development of sculpted particle wave packets reopens the question of how ionization occurs for these new particle wave forms. We present theoretical DDCSs for (e, 2e) ionization of atomic hydrogen for electron vortex projectiles. Our results predict that the ionization mechanism for vortex projectiles is similar to that of non-vortex projectiles, but that the projectile’s momentum uncertainty causes noticeable changes to the shape and magnitude of the vortex DDCSs. Specifically, there is a broadening and splitting of the angular DDCS peak for vortex projectiles, and an increase in the cross section for high energy ejected electrons. 
    more » « less