skip to main content


Title: Mass Matters: No Evidence for Ubiquitous Lithium Production in Low-mass Clump Giants
Abstract Known sources of lithium (Li) in the universe include the Big Bang, novae, asymptotic giant branch stars, and cosmic-ray spallation. During their longer-lived evolutionary phases, stars are not expected to add to the Li budget of the Galaxy, but to largely deplete it. In this context, recent analyses of Li data from GALAH and LAMOST for field red clump (RC) stars have concluded that there is the need for a new production channel of Li, ubiquitous among low-mass stars, and that would be triggered on the upper red giant branch (RGB) or at helium ignition. This is distinct from the Li-rich giant problem and reflects bulk RC star properties. We provide an analysis of the GALAH Li data that accounts for the distribution of progenitor masses of field RC stars observed today. Such progenitors are different than today’s field RGB stars. Using standard post-main-sequence stellar evolution, we show that the distribution of Li among field RC giants as observed by GALAH is consistent with standard model predictions, and does not require new Li production mechanisms. Our model predicts a large fraction of very low Li abundances from low-mass progenitors, with higher abundances from higher mass ones. Moreover, there should be a large number of upper limits for RC giants, and higher abundances should correspond to higher masses. The most recent GALAH data indeed confirm the presence of large numbers of upper limits, and a much lower mean Li abundance in RC stars, in concordance with our interpretation.  more » « less
Award ID(s):
2001869
NSF-PAR ID:
10340747
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
933
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
58
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aims: We present a detailed long-term study of the single M6 III giant RZ Ari to obtain direct and simultaneous measurements of the magnetic field, activity indicators, and radial velocity in order to infer the origin of its activity. We study its magnetic activity in the context of stellar evolution, and for this purpose, we also refined its evolutionary status and Li abundance. In general, for the M giants, little is known about the properties of the magnetic activity and its causes. RZ Ari possess the strongest surface magnetic field of the known Zeeman-detected M giants and is bright enough to allow a deep study of its surface magnetic structure. The results are expected to shed light on the activity mechanism in these stars.

    Methods: We used the spectropolarimeter Narval at the Télescope Bernard Lyot (Observatoire du Pic du Midi, France) to obtain a series of Stokes I and V profiles for RZ Ari. Using the least-squares deconvolution technique, we were able to detect the Zeeman signature of the magnetic field. We measured its longitudinal component by means of the averaged Stokes I and V profiles. In addition, we also applied Zeeman-Doppler imaging (ZDI) to search for the rotation period of the star, and we constructed a tentative magnetic map. It is the first magnetic map for a star that evolved at the tip of red giant branch (RGB) or even on the asymptotic giant branch (AGB). The spectra also allowed us to monitor chromospheric emission lines, which are well-known indicators of stellar magnetic activity. From the observations obtained between September 2010 and August 2019, we studied the variability of the magnetic field of RZ Ari. We also redetermined the initial mass and evolutionary status of this star based on current stellar evolutionary tracks and on the angular diameter measured from CHARA interferometry. Results: Our results point to an initial mass of 1.5Mso that this giant is more likely an early-AGB star, but a lotaction at the tip of the RGB is not completely excluded. With a v sin i of 6.0 ±0.5 km s−1, the upper limit for the rotation period is found to be 909 days. On the basis of our dataset and AAVSO photometric data, we determined periods longer than 1100 days for the magnetic field and photometric variability, and 704 days for the spectral line activity indicators. The rotation period determined on the basis of the Stokes V profiles variability is 530 days. A similar period of 544 days is also found for the photometric data. When we take this rotation period and the convective turnover time into account, an effective action of an α-ω type dynamo seems to be unlikely, but other types of dynamo could be operating there. The star appears to lie outside the two magnetic strips on the giant branches, where the α-ω-type dynamo is expected to operate effectively, and it also has a much higher lithium content than the evolutionary model predicts. These facts suggest that a planet engulfment could speed up its rotation and trigger dynamo-driven magnetic activity. On the other hand, the period of more than 1100 days cannot be explained by rotational modulation and could be explained by the lifetime of large convective structures. The absence of linear polarization at the time the magnetic field was detected, however, suggests that a local dynamo probably does not contribute significantly to the magnetic field, at least for that time interval. 
    more » « less
  2. Abstract

    We have gathered near-infraredzyJ-band high-resolution spectra of nearly 300 field red giant stars with known lithium abundances in order to survey their Heiλ10830 absorption strengths. This transition is an indicator of chromospheric activity and/or mass loss in red giants. The majority of stars in our sample reside in the red clump or red horizontal branch based on theirVJ,MVcolor–magnitude diagram, and GaiaTeffand log(g) values. Most of our target stars are Li-poor in the sense of having normally low Li abundances, defined here as logϵ(Li) < 1.25. Over 90% of these Li-poor stars have weakλ10830 features. However, more than half of the 83 Li-rich stars (logϵ(Li) > 1.25) have strongλ10830 absorptions. These largeλ10830 lines signal excess chromospheric activity in Li-rich stars; there is almost no indication of significant mass loss. The Li-rich giants may also have a higher binary fraction than Li-poor stars, based on their astrometric data. It appears likely that both residence on the horizontal branch and present or past binary interaction play roles in the significant Li–He connection established in this survey.

     
    more » « less
  3. ABSTRACT

    Standard stellar evolution theory poorly predicts the surface abundances of chemical species in low-mass, red giant branch (RGB) stars. Observations show an enhancement of p–p chain and CNO cycle products in red giant envelopes, which suggests the existence of non-canonical mixing that brings interior burning products to the surface of these stars. The 12C/13C ratio is a highly sensitive abundance metric used to probe this mixing. We investigate extra RGB mixing by examining: (1) how 12C/13C is altered along the RGB, and (2) how 12C/13C changes for stars of varying age and mass. Our sample consists of 43 red giants, spread over 15 open clusters from the Sloan Digital Sky Survey’s APOGEE DR17, that have reliable 12C/13C ratios derived from their APOGEE spectra. We vetted these 12C/13C ratios and compared them as a function of evolution and age/mass to the standard mixing model of stellar evolution, and to a model that includes prescriptions for RGB thermohaline mixing and stellar rotation. We find that the observations deviate from standard mixing models, implying the need for extra mixing. Additionally, some of the abundance patterns depart from the thermohaline model, and it is unclear whether these differences are due to incomplete observations, issues inherent to the model, our assumption of the cause of extra mixing, or any combination of these factors. Nevertheless, the surface abundances across our age/mass range clearly deviate from the standard model, agreeing with the notion of a universal mechanism for RGB extra mixing in low-mass stars.

     
    more » « less
  4. null (Ed.)
    ABSTRACT Since 7Li is easily destroyed in low temperatures, the surface lithium abundance decreases as stars evolve. This is supported by the lithium depletion observed in the atmosphere of most red giants. However, recent studies show that almost all of red clump stars have high lithium abundances A(Li) > −0.9, which are not predicted by the standard theory of the low-mass stellar evolution. In order to reconcile the discrepancy between the observations and the model, we consider additional energy loss channels that may come from physics beyond the Standard Model. A(Li) slightly increases near the tip of the red giant branch even in the standard model with thermohaline mixing because of the 7Be production by the Cameron–Fowler mechanism, but the resultant 7Li abundance is much lower than the observed values. We find that the production of 7Be becomes more active if there are additional energy loss channels, because themohaline mixing becomes more efficient and a heavier helium core is formed. 
    more » « less
  5. Since 7Li is easily destroyed in low temperatures, the surface lithium abundance decreases as stars evolve. This is supported by the lithium depletion observed in the atmosphere of most red giants. However, recent studies show that almost all of red clump stars have high lithium abundances A(Li)>-0.9, which are not predicted by the standard theory of the low-mass stellar evolution. In order to reconcile the discrepancy between the observations and the model, we consider an additional energy loss induced by a neutrino magnetic moment. A(Li) slightly increases near the tip of the red giant branch even in the standard model with thermohaline mixing because of the 7Be production by the Cameron-Fowler mechanism, but the resultant 7Li abundance is much lower than the observed values. We find that the production of 7Be becomes more active if the neutrino magnetic moment is invoked, because themohaline mixing becomes more efficient and a heavier helium core is formed because of the delay of the helium flash. The discrepancy is mitigated when the neutrino magnetic moment of (2-5)*10^{-12}mu_B is applied, where mu_B is the Bohr magneton. 
    more » « less