Abstract We introduce deep learning models to estimate the masses of the binary components of black hole mergers, ( m 1 , m 2 ) , and three astrophysical properties of the post-merger compact remnant, namely, the final spin, a f , and the frequency and damping time of the ringdown oscillations of the fundamental ℓ = m = 2 bar mode, ( ω R , ω I ) . Our neural networks combine a modified WaveNet architecture with contrastive learning and normalizing flow. We validate these models against a Gaussian conjugate prior family whose posterior distribution is described by a closed analytical expression. Upon confirming that our models produce statistically consistent results, we used them to estimate the astrophysical parameters ( m 1 , m 2 , a f , ω R , ω I ) of five binary black holes: GW150914 , GW170104 , GW170814 , GW190521 and GW190630 . We use PyCBC Inference to directly compare traditional Bayesian methodologies for parameter estimation with our deep learning based posterior distributions. Our results show that our neural network models predict posterior distributions that encode physical correlations, and that our data-driven median results and 90% confidence intervals are similar to those produced with gravitational wave Bayesian analyses. This methodology requires a single V100 NVIDIA GPU to produce median values and posterior distributions within two milliseconds for each event. This neural network, and a tutorial for its use, are available at the Data and Learning Hub for Science .
more »
« less
A Software Ecosystem for Deploying Deep Learning in Gravitational Wave Physics
The recent application of neural network algorithms to problems in gravitational-wave physics invites the study of how best to build production-ready applications on top of them. By viewing neural networks not as standalone models, but as components or functions in larger data processing pipelines, we can apply lessons learned from both traditional software development practices as well as successful deep learning applications from the private sector. This paper highlights challenges presented by straightforward but naïve deployment strategies for deep learning models, and identifies solutions to them gleaned from these sources. It then presents HERMES, a library of tools for implementing these solutions, and describes how HERMES is being used to develop a particular deep learning application which will be deployed during the next data collection run of the International Gravitational-Wave Observatories.
more »
« less
- PAR ID:
- 10340763
- Date Published:
- Journal Name:
- FlexScience'22
- Page Range / eLocation ID:
- 9 to 17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The field of transient astronomy has seen a revolution with the first gravitational-wave detections and the arrival of multi-messenger observations they enabled. Transformed by the first detection of binary black hole and binary neutron star mergers, computational demands in gravitational-wave astronomy are expected to grow by at least a factor of two over the next five years as the global network of kilometer-scale interferometers are brought to design sensitivity. With the increase in detector sensitivity, real-time delivery of gravitational-wave alerts will become increasingly important as an enabler of multi-messenger followup. In this work, we report a novel implementation and deployment of deep learning inference for real-time gravitational-wave data denoising and astrophysical source identification. This is accomplished using a generic Inference-as-a-Service model that is capable of adapting to the future needs of gravitational-wave data analysis. Our implementation allows seamless incorporation of hardware accelerators and also enables the use of commercial or private (dedicated) as-a-service computing. Based on our results, we propose a paradigm shift in low-latency and offline computing in gravitational-wave astronomy. Such a shift can address key challenges in peak-usage, scalability and reliability, and provide a data analysis platform particularly optimized for deep learning applications. The achieved sub-millisecond scale latency will also be relevant for any machine learning-based real-time control systems that may be invoked in the operation of near-future and next generation ground-based laser interferometers, as well as the front-end collection, distribution and processing of data from such instruments.more » « less
-
Lu, Zhiyong (Ed.)Abstract MotivationForecasting the synergistic effects of drug combinations facilitates drug discovery and development, especially regarding cancer therapeutics. While numerous computational methods have emerged, most of them fall short in fully modeling the relationships among clinical entities including drugs, cell lines, and diseases, which hampers their ability to generalize to drug combinations involving unseen drugs. These relationships are complex and multidimensional, requiring sophisticated modeling to capture nuanced interplay that can significantly influence therapeutic efficacy. ResultsWe present a novel deep hypergraph learning method named Heterogeneous Entity Representation for MEdicinal Synergy (HERMES) prediction to predict the synergistic effects of anti-cancer drugs. Heterogeneous data sources, including drug chemical structures, gene expression profiles, and disease clinical semantics, are integrated into hypergraph neural networks equipped with a gated residual mechanism to enhance high-order relationship modeling. HERMES demonstrates state-of-the-art performance on two benchmark datasets, significantly outperforming existing methods in predicting the synergistic effects of drug combinations, particularly in cases involving unseen drugs. Availability and implementationThe source code is available at https://github.com/Christina327/HERMES.more » « less
-
Wind energy and wave energy are considered to have enormous potential as renewable energy sources in the energy system to make great contributions in transitioning from fossil fuel to renewable energy. However, the uncertain, erratic, and complicated scenarios, as well as the tremendous amount of information and corresponding parameters, associated with wind and wave energy harvesting are difficult to handle. In the field of big data handing and mining, artificial intelligence plays a critical and efficient role in energy system transition, harvesting and related applications. The derivative method of deep learning and its surrounding prolongation structures are expanding more maturely in many fields of applications in the last decade. Even though both wind and wave energy have the characteristics of instability, more and more applications have implemented using these two renewable energy sources with the support of deep learning methods. This paper systematically reviews and summarizes the different models, methods and applications where the deep learning method has been applied in wind and wave energy. The accuracy and effectiveness of different methods on a similar application were compared. This paper concludes that applications supported by deep learning have enormous potential in terms of energy optimization, harvesting, management, forecasting, behavior exploration and identification.more » « less
-
The numerical solution of relativistic hydrodynamics equations in conservative form requires root-finding algorithms that invert the conservative-to-primitive variables map. These algorithms employ the equation of state of the fluid and can be computationally demanding for applications involving sophisticated microphysics models, such as those required to calculate accurate gravitational wave signals in numerical relativity simulations of binary neutron stars. This work explores the use of machine learning methods to speed up the recovery of primitives in relativistic hydrodynamics. Artificial neural networks are trained to replace either the interpolations of a tabulated equation of state or directly the conservative-to-primitive map. The application of these neural networks to simple benchmark problems shows that both approaches improve over traditional root finders with tabular equation-of-state and multi-dimensional interpolations. In particular, the neural networks for the conservative-to-primitive map accelerate the variable recovery by more than an order of magnitude over standard methods while maintaining accuracy. Neural networks are thus an interesting option to improve the speed and robustness of relativistic hydrodynamics algorithms.more » « less