skip to main content


Title: Impacts of Limited Model Resolution on the Representation of Mountain Wave and Secondary Wave Dynamics in Local and Global Models: 2. Mountain Wave and Secondary Wave Evolutions in the Thermosphere
Award ID(s):
1647354
NSF-PAR ID:
10340829
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
127
Issue:
9
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract This paper addresses the compressible nonlinear dynamics accompanying increasing mountain wave (MW) forcing over the southern Andes and propagation into the mesosphere and lower thermosphere (MLT) under winter conditions. A stretched grid provides very high resolution of the MW dynamics in a large computational domain. A slow increase of cross-mountain winds enables MWs to initially break in the mesosphere and extend to lower and higher altitudes thereafter. MW structure and breaking is strongly modulated by static mean and semidiurnal tide fields exhibiting a critical level at ~114 km for zonal MW propagation. Varying vertical group velocities for different zonal wavelengths λ x yield initial breaking in the lee of the major Andes peaks for λ x ~ 50 km, and extending significantly upstream for larger λ x approaching the critical level at later times. The localized extent of the Andes terrain in latitude leads to “ship wave” responses above the individual peaks at earlier times, and a much larger ship-wave response at 100 km and above as the larger-scale MWs achieve large amplitudes. Other responses above regions of MW breaking include large-scale secondary gravity waves and acoustic waves that achieve very large amplitudes extending well into the thermosphere. MW breaking also causes momentum deposition that yields local decelerations initially, which merge and extend horizontally thereafter and persist throughout the event. Companion papers examine the associated momentum fluxes, mean-flow evolution, gravity wave–tidal interactions, and the MW instability dynamics and sources of secondary gravity waves and acoustic waves. 
    more » « less
  2. Abstract

    Long‐term efforts have sought to extend global model resolution to smaller scales enabling more accurate descriptions of gravity wave (GW) sources and responses, given their major roles in coupling and variability throughout the atmosphere. Such studies reveal significant improvements accompanying increasing resolution, but no guidance on what is sufficient to approximate reality. We take the opposite approach, using a finite‐volume model solving the Navier‐Stokes equations exactly. The reference simulation addresses mountain wave (MW) generation and responses over the Southern Andes described using isotropic 500 m, central resolution by Fritts et al. (2021),https://doi.org/10.1175/JAS-D-20-0207.1and Lund et al. (2020),https://doi.org/10.1175/JAS-D-19-0356.1. Reductions of horizontal resolution to 1 and 2 km result in (a) systematic increases in initial MW breaking altitudes, (b) weaker, larger‐scale generation of secondary GWs and acoustic waves accompanying these dynamics, and (c) significantly weaker and less extended responses in the mesosphere in latitude and longitude. Horizontal resolution of 4 km largely suppresses instabilities, but allows weak, sustained mean‐flow interactions. Responses for 8 km resolution are very weak and fail to capture any aspects of the high‐resolution responses. The chosen mean winds allow efficient MW penetration into the mesosphere and lower thermosphere, hence only exhibit strong pseudo‐momentum deposition and mean wind decelerations at higher altitudes. A companion paper by Fritts et al. (2022),https://doi.org/10.1029/2021JD036035explores the impacts of decreasing resolution on responses in the thermosphere.

     
    more » « less
  3. Abstract

    Gravity waves (GWs) and their associated multi‐scale dynamics are known to play fundamental roles in energy and momentum transport and deposition processes throughout the atmosphere. We describe an initial machine learning model—the Compressible Atmosphere Model Network (CAM‐Net). CAM‐Net is trained on high‐resolution simulations by the state‐of‐the‐art model Complex Geometry Compressible Atmosphere Model (CGCAM). Two initial applications to a Kelvin‐Helmholtz instability source and mountain wave generation, propagation, breaking, and Secondary GW (SGW) generation in two wind environments are described here. Results show that CAM‐Net can capture the key 2‐D dynamics modeled by CGCAM with high precision. Spectral characteristics of primary and SGWs estimated by CAM‐Net agree well with those from CGCAM. Our results show that CAM‐Net can achieve a several order‐of‐magnitude acceleration relative to CGCAM without sacrificing accuracy and suggests a potential for machine learning to enable efficient and accurate descriptions of primary and secondary GWs in global atmospheric models.

     
    more » « less
  4. Abstract

    In this paper, we simulate an observed mountain wave event over central Europe and investigate the subsequent generation, propagation, phase speeds and spatial scales, and momentum deposition of secondary waves under three different tidal wind conditions. We find the mountain wave breaks just below the lowest critical level in the mesosphere. As the mountain wave breaks, it extends outwards along the phases and fluid associated with the breaking flows downstream of its original location by 500–1,000 km. The breaking generates a broad range of secondary waves with horizontal scales ranging from the mountain wave instability scales (20–300 km), to multiples of the mountain wave packet scale (420 km+) and phase speeds from 40 to 150 m/s in the lower thermosphere. The secondary wave morphology consists of semi‐concentric patterns with wave propagation generally opposing the local tidal winds in the mesosphere. Shears in the tidal winds cause breaking of the secondary waves and local wave forcing which generates even more secondary waves. The tidal winds also influence the dominant wavelengths and phase speeds of secondary waves that reach the thermosphere. The secondary waves that reach the thermosphere deposit their energy and momentum over a broad area of the thermosphere, mostly eastward of the source and concentrated between 110 and 130 km altitude. The secondary wave forcing is significant and will likely be very important for the dynamics of the thermosphere. A large portion of this forcing comes from nonlinearly generated secondary waves at relatively small‐scales which arise from the wave breaking processes.

     
    more » « less
  5. Anurans can display a host of intriguing sexual syndromes, including hermaphroditism and sex reversal. Using a multifaceted approach for diagnosing and characterising hermaphroditism in the endangered anuran species Rana mucosa, we tracked changes in female reproductive status using hormone monitoring, ultrasound examinations, individual life history, fertilisation records and post-mortem findings. Seven individuals originally sexed as females developed secondary male sexual characteristics, behaviour and hormone profiles and, in some cases, had testicular tissue despite having previously laid eggs. Our results suggest that reproductive technologies can shed light on life history patterns and reproductive anomalies that may affect endangered anuran survival. 
    more » « less