skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Massive Quiescent Galaxy Confirmed in a Protocluster at z = 3.09
Abstract We report a massive quiescent galaxy at z spec = 3.0922 − 0.004 + 0.008 spectroscopically confirmed at a protocluster in the SSA22 field by detecting the Balmer and Ca ii absorption features with the multi-object spectrometer for infrared exploration on the Keck I telescope. This is the most distant quiescent galaxy confirmed in a protocluster to date. We fit the optical to mid-infrared photometry and spectrum simultaneously with spectral energy distribution (SED) models of parametric and nonparametric star formation histories (SFHs). Both models fit the observed SED well and confirm that this object is a massive quiescent galaxy with a stellar mass of log ( M ⋆ / M ⊙ ) = 11.26 − 0.04 + 0.03 and 11.54 − 0.00 + 0.03 , and a star formation rate of SFR/ M ⊙ yr −1 < 0.3 and = 0.01 − 0.01 + 0.03 for parametric and nonparametric models, respectively. The SFH from the former modeling is described as an instantaneous starburst whereas that of the latter modeling is longer-lived, but both models agree with a sudden quenching of the star formation at ∼0.6 Gyr ago. This massive quiescent galaxy is confirmed in an extremely dense group of galaxies predicted as a progenitor of a brightest cluster galaxy formed via multiple mergers in cosmological numerical simulations. We discover three new plausible [O iii ] λ 5007 emitters at 3.0791 ≤ z spec ≤ 3.0833 serendipitously detected around the target. Two of them just between the target and its nearest massive galaxy are possible evidence of their interactions. They suggest the future great size and stellar mass evolution of this massive quiescent galaxy via mergers.  more » « less
Award ID(s):
2009278
PAR ID:
10340857
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
919
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The protocluster SPT2349−56 at $z = 4.3$ contains one of the most actively star-forming cores known, yet constraints on the total stellar mass of this system are highly uncertain. We have therefore carried out deep optical and infrared observations of this system, probing rest-frame ultraviolet to infrared wavelengths. Using the positions of the spectroscopically confirmed protocluster members, we identify counterparts and perform detailed source deblending, allowing us to fit spectral energy distributions in order to estimate stellar masses. We show that the galaxies in SPT2349−56 have stellar masses proportional to their high star formation rates, consistent with other protocluster galaxies and field submillimetre galaxies (SMGs) around redshift 4. The galaxies in SPT2349−56 have on average lower molecular gas-to-stellar mass fractions and depletion time-scales than field SMGs, although with considerable scatter. We construct the stellar-mass function for SPT2349−56 and compare it to the stellar-mass function of $z = 1$ galaxy clusters, finding consistent shapes between the two. We measure rest-frame galaxy ultraviolet half-light radii from our HST-F160W imaging, finding that on average the galaxies in our sample are similar in size to typical star-forming galaxies at these redshifts. However, the brightest HST-detected galaxy in our sample, found near the luminosity-weighted centre of the protocluster core, remains unresolved at this wavelength. Hydrodynamical simulations predict that the core galaxies will quickly merge into a brightest cluster galaxy, thus our observations provide a direct view of the early formation mechanisms of this class of object. 
    more » « less
  2. We present spectroscopic confirmation of an ultra-massive galaxy (UMG) with log ( M / M ) = 10.98 ± 0.07 at z s p e c = 4.8947 in the Extended Groth Strip (EGS), based on deep observations of Ly α emission with Keck/DEIMOS. The ultra-massive galaxy (UMG-28740) is the most massive member in one of the most significant overdensities in the EGS, with four additional photometric members with log ( M / M ) > 10.5 within R p r o j 1 cMpc. Spectral energy distribution (SED) fitting using a large suite of star formation histories and two sets of high-quality photometry from ground- and space-based facilities consistently estimates the mass of this object to be log ( M / M ) 11 with a small standard deviation between measurements ( σ = 0.07 ). While the best-fit SED models agree on stellar mass, we find discrepancies in the estimated star formation rate for UMG-28740, resulting in either a star-forming or quiescent system. 𝐽 𝑊 𝑆 𝑇 /NIRCam photometry of UMG-28740 strongly favors a quiescent scenario, demonstrating the need for high-quality mid-IR observations. Assuming the galaxy to be quiescent, UMG-28740 formed the bulk of its stars at z > 10 and is quenching at z 8 , resulting in a high star formation efficiency at high redshift ( ϵ 0.2 at z 5 and ϵ 1 at z 8 ). As the most massive galaxy in its protocluster environment, UMG-28740 is a unique example of the impossibly early galaxy problem. 
    more » « less
  3. Abstract We present in this paper (Paper II of the series) a 35 arcmin2JWST/NIRCam imaging and wide-field slitless spectroscopy mosaic centered on J0305–3150, a luminous quasar atz= 6.61. The F356W grism data reveal 124 [Oiii]+Hβemitters at 5.3 < z < 7, 53 of which constitute a protocluster spanning (10 cMpc)2across 6.5 < z < 6.8. We find no evidence of any broad-line active galactic nucleus (AGN) in individual galaxies or stacking, reporting a median HβFWHM of 585 ± 152 km s−1; however, the mass–excitation diagram and “little red dot” color and compactness criteria suggest that there are a few AGN candidates on the outskirts of the protocluster. We fit the spectral energy distributions (SEDs) of the [Oiii] emitters withProspectorandBagpipesand find that none of the SED-derived properties (stellar mass, age, or star formation rate) correlate with proximity to the quasar. While there is no correlation between galaxy age and local galaxy density, we find modest correlations of local galaxy density with increasing stellar mass, decreasing 10–100 Myr star formation rate ratios, and decreasing nebular line equivalent widths. We further find that the protocluster galaxies are consistent with being more massive, being older, and hosting higher star formation rates than the field sample at the 3σlevel, distributed in a filamentary structure that supports inside-out formation of the protocluster. There is modest evidence that galaxy evolution proceeds differently as a function of the density of local environment within protoclusters during the epoch of reionization, and the central quasar has little effect on the galaxy properties of the surrounding structure. 
    more » « less
  4. Abstract The discovery and localization of FRB 20240209A by the Canadian Hydrogen Intensity Mapping Fast Radio Burst (CHIME/FRB) experiment marks the first repeating FRB localized with the CHIME/FRB Outriggers and adds to the small sample of repeating FRBs with associated host galaxies. Here we present Keck and Gemini observations of the host that reveal a redshiftz = 0.1384 ± 0.0004. We perform stellar population modeling to jointly fit the optical through mid-IR data of the host and infer a median stellar mass log(M*/M) = 11.35 ± 0.01 and a mass-weighted stellar population age  ~11 Gyr, corresponding to the most massive and oldest FRB host discovered to date. Coupled with a star formation rate  <0.31Myr−1, the specific star formation rate  <10−11.9yr−1classifies the host as quiescent. Through surface brightness profile modeling, we determine an elliptical galaxy morphology, marking the host as the first confirmed elliptical FRB host. The discovery of a quiescent early-type host galaxy within a transient class predominantly characterized by late-type star-forming hosts is reminiscent of short-duration gamma-ray bursts, Type Ia supernovae, and ultraluminous X-ray sources. Based on these shared host demographics, coupled with a large offset as demonstrated in our companion Letter, we conclude that preferred sources for FRB 20240209A include magnetars formed through merging binary neutron stars/white dwarfs or the accretion-induced collapse of a white dwarf, or a luminous X-ray binary. Together with FRB 20200120E localized to a globular cluster in M81, our findings provide strong evidence that some fraction of FRBs may arise from a process distinct from the core collapse of massive stars. 
    more » « less
  5. ABSTRACT We present specific star formation rates (sSFRs) for 40 ultraviolet (UV)-bright galaxies at z ∼ 7–8 observed as part of the Reionization Era Bright Emission Line Survey (REBELS) Atacama Large Millimeter/submillimeter Array (ALMA) large programme. The sSFRs are derived using improved star formation rate (SFR) calibrations and spectral energy distribution (SED)-based stellar masses, made possible by measurements of far-infrared (FIR) continuum emission and [C ii]-based spectroscopic redshifts. The median sSFR of the sample is $$18_{-5}^{+7}$$ Gyr−1, significantly larger than literature measurements lacking constraints in the FIR, reflecting the larger obscured SFRs derived from the dust continuum relative to that implied by the UV+optical SED. We suggest that such differences may reflect spatial variations in dust across these luminous galaxies, with the component dominating the FIR distinct from that dominating the UV. We demonstrate that the inferred stellar masses (and hence sSFRs) are strongly dependent on the assumed star formation history in reionization-era galaxies. When large sSFR galaxies (a population that is common at z > 6) are modelled with non-parametric star formation histories, the derived stellar masses can increase by an order of magnitude relative to constant star formation models, owing to the presence of a significant old stellar population that is outshined by the recent burst. The [C ii] line widths in the largest sSFR systems are often very broad, suggesting dynamical masses capable of accommodating an old stellar population suggested by non-parametric models. Regardless of these systematic uncertainties among derived parameters, we find that sSFRs increase rapidly toward higher redshifts for massive galaxies (9.6 < log (M*/M⊙) < 9.8), evolving as (1 + z)1.7 ± 0.3, broadly consistent with expectations from the evolving baryon accretion rates. 
    more » « less