skip to main content

Title: Park Characteristics and Changes in Park Visitation before, during, and after COVID-19 Shelter-in-Place Order
The COVID-19 pandemic has limited people’s visitation to public places because of social distancing and shelter-in-place orders. According to Google’s community mobility reports, some countries showed a decrease in park visitation during the pandemic, while others showed an increase. Although government responses played a significant role in this variation, little is known about park visitation changes and the park attributes that are associated with these changes. Therefore, we aimed to examine the associations between park characteristics and percent changes in park visitation in Harris County, TX, for three time periods: before, during, and after the shelter-in-place order of Harris County. We utilized SafeGraph’s point-of-interest data to extract weekly park visitation counts for the Harris County area. This dataset included the size of each park and its weekly number of visits from 2 March to 31 May 2020. In addition, we measured park characteristics, including greenness density, using the normalized difference vegetation index; park type (mini, neighborhood, community, regional/metropolitan); presence of sidewalks and bikeways; sidewalk and bikeway quantity; and bikeway quality. Results showed that park visitation decreased after issuing the shelter-in-place order and increased after this order was lifted. Results from linear regression models indicated that the higher the greenness density of the park, the smaller the decrease in park visitation during the shelter-in-place period compared to before the shelter-in-place order. This relationship also appeared after the shelter-in-place order. The presence of more sidewalks was related to less visitation increase after the shelter-in-place order. These findings can guide planners and designers to implement parks that promote public visitation during pandemics and potentially benefit people’s physical and mental health.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hurricanes are one of the most catastrophic natural hazards faced by residents of the United States. Improving the public’s hurricane preparedness is essential to reduce the impact and disruption of hurricanes on households. Inherent in traditional methods for quantifying and monitoring hurricane preparedness are significant lags, which hinder effective monitoring of residents’ preparedness in advance of an impending hurricane. This study establishes a methodological framework to quantify the extent, timing, and spatial variation of hurricane preparedness at the census block group level using high-resolution location intelligence data. Anonymized cell phone data on visits to points-of-interest for each census block group in Harris County before 2017 Hurricane Harvey were used to examine residents’ hurricane preparedness. Four categories of points-of-interest, grocery stores, gas stations, pharmacies and home improvement stores, were identified as they have close relationship with hurricane preparedness, and the daily number of visits from each CBG to these four categories of POIs were calculated during preparation period. Two metrics, extent of preparedness and proactivity, were calculated based on the daily visit percentage change compared to the baseline period. The results show that peak visits to pharmacies often occurred in the early stage of preparation, whereas the peak of visits to gas stations happened closer to hurricane landfall. The spatial and temporal patterns of visits to grocery stores and home improvement stores were quite similar. However, correlation analysis demonstrates that extent of preparedness and proactivity are independent of each other. Combined with synchronous evacuation data, CBGs in Harris County were divided into four clusters in terms of extent of preparedness and evacuation rate. The clusters with low preparedness and low evacuation rate were identified as hotspots of vulnerability for shelter-in-place households that would need urgent attention during response. Hence, the research findings provide a new data-driven approach to quantify and monitor the extent, timing, and spatial variations of hurricane preparedness. Accordingly, the study advances data-driven understanding of human protective actions during disasters. The study outcomes also provide emergency response managers and public officials with novel data-driven insights to more proactively monitor residents’ disaster preparedness, making it possible to identify under-prepared areas and better allocate resources in a timely manner. 
    more » « less
  2. New York has become one of the worst-affected COVID-19 hotspots and a pandemic epicenter due to the ongoing crisis. This paper identifies the impact of the pandemic and the effectiveness of government policies on human mobility by analyzing multiple datasets available at both macro and micro levels for New York City. Using data sources related to population density, aggregated population mobility, public rail transit use, vehicle use, hotspot and non-hotspot movement patterns, and human activity agglomeration, we analyzed the inter-borough and intra-borough movement for New York City by aggregating the data at the borough level. We also assessed the internodal population movement amongst hotspot and non-hotspot points of interest for the month of March and April 2020. Results indicate a drop of about 80% in people’s mobility in the city, beginning in mid-March. The movement to and from Manhattan showed the most disruption for both public transit and road traffic. The city saw its first case on March 1, 2020, but disruptions in mobility can be seen only after the second week of March when the shelter in place orders was put in effect. Owing to people working from home and adhering to stay-at-home orders, Manhattan saw the largest disruption to both inter- and intra-borough movement. But the risk of spread of infection in Manhattan turned out to be high because of higher hotspot-linked movements. The stay-at-home restrictions also led to an increased population density in Brooklyn and Queens as people were not commuting to Manhattan. Insights obtained from this study would help policymakers better understand human behavior and their response to the news and governmental policies. 
    more » « less
  3. null (Ed.)
    The sudden outbreak of the COVID-19 pandemic has brought drastic changes to people’s daily lives, work, and the surrounding environment. Investigations into these changes are very important for decision makers to implement policies on economic loss assessments and stimulation packages, city reopening, resilience of the environment, and arrangement of medical resources. In order to analyze the impact of COVID-19 on people’s lives, activities, and the natural environment, this paper investigates the spatial and temporal characteristics of Nighttime Light (NTL) radiance and Air Quality Index (AQI) before and during the pandemic in mainland China. The monthly mean NTL radiance, and daily and monthly mean AQI are calculated over mainland China and compared before and during the pandemic. Our results show that the monthly average NTL brightness is much lower during the quarantine period than before. This study categorizes NTL into three classes: residential area, transportation, and public facilities and commercial centers, with NTL radiance ranges of 5–20, 20–40 and greater than 40 (nW· cm − 2 · sr − 1 ), respectively. We found that the Number of Pixels (NOP) with NTL detection increased in the residential area and decreased in the commercial centers for most of the provinces after the shutdown, while transportation and public facilities generally stayed the same. More specifically, we examined these factors in Wuhan, where the first confirmed cases were reported, and where the earliest quarantine measures were taken. Observations and analysis of pixels associated with commercial centers were observed to have lower NTL radiance values, indicating a dimming behavior, while residential area pixels recorded increased levels of brightness after the beginning of the lockdown. The study also discovered a significant decreasing trend in the daily average AQI for mainland China from January to March 2020, with cleaner air in most provinces during February and March, compared to January 2020. In conclusion, the outbreak and spread of COVID-19 has had a crucial impact on people’s daily lives and activity ranges through the increased implementation of lockdown and quarantine policies. On the other hand, the air quality of mainland China has improved with the reduction in non-essential industries and motor vehicle usage. This evidence demonstrates that the Chinese government has executed very stringent quarantine policies to deal with the pandemic. The decisive response to control the spread of COVID-19 provides a reference for other parts of the world. 
    more » « less
  4. Benenson, Itzhak (Ed.)
    With the onset of COVID-19 and the resulting shelter in place guidelines combined with remote working practices, human mobility in 2020 has been dramatically impacted. Existing studies typically examine whether mobility in specific localities increases or decreases at specific points in time and relate these changes to certain pandemic and policy events. However, a more comprehensive analysis of mobility change over time is needed. In this paper, we study mobility change in the US through a five-step process using mobility footprint data. (Step 1) Propose the Delta Time Spent in Public Places (ΔTSPP) as a measure to quantify daily changes in mobility for each US county from 2019-2020. (Step 2) Conduct Principal Component Analysis (PCA) to reduce the ΔTSPP time series of each county to lower-dimensional latent components of change in mobility. (Step 3) Conduct clustering analysis to find counties that exhibit similar latent components. (Step 4) Investigate local and global spatial autocorrelation for each component. (Step 5) Conduct correlation analysis to investigate how various population characteristics and behavior correlate with mobility patterns. Results show that by describing each county as a linear combination of the three latent components, we can explain 59% of the variation in mobility trends across all US counties. Specifically, change in mobility in 2020 for US counties can be explained as a combination of three latent components: 1) long-term reduction in mobility, 2) no change in mobility, and 3) short-term reduction in mobility. Furthermore, we find that US counties that are geographically close are more likely to exhibit a similar change in mobility. Finally, we observe significant correlations between the three latent components of mobility change and various population characteristics, including political leaning, population, COVID-19 cases and deaths, and unemployment. We find that our analysis provides a comprehensive understanding of mobility change in response to the COVID-19 pandemic. 
    more » « less
  5. Abstract Background Public green spaces are important for human health, but they may expose visitors to ticks and tick-borne pathogens. We sought to understand, for the first time, visitors’ exposure risk and drivers of tick-preventative behavior in three popular parks on Staten Island, New York City, NY, USA, by integrating tick hazard and park visitors’ behaviors, risk perceptions and knowledge. Methods We conducted tick sampling in three parks, across three site types (open spaces, the edge of open spaces, and trails) and three within-park habitats (maintained grass, unmaintained herbaceous, and leaf litter) to estimate tick density during May-August 2019. Human behavior was assessed by observations of time spent and activity type in each site. We integrated the time spent in each location by park visitors and the tick density to estimate the probability of human-tick encounter. To assess visitors’ tick prevention behaviors, a knowledge, attitude, and practices (KAP) survey was administered. Results Three tick species ( Ixodes scapularis , Amblyomma americanum and Haemaphysalis longicornis) were collected. For all species, the density of nymphs was greatest in unmaintained herbaceous habitats and trails, however, the fewest people entered these hazardous locations. The KAP survey revealed that most respondents ( N  = 190) identified parks as the main location for tick exposure, but most believed they had minimal risk for tick encounter. Consequently, many visitors did not conduct tick checks. People were most likely to practice tick checks if they knew multiple prevention methods and perceived a high likelihood of tick encounter. Conclusions By integrating acarological indices with park visitor behaviors, we found a mismatch between areas with higher tick densities and areas more frequently used by park visitors. However, this exposure risk varied among demographic groups, the type of activities and parks, with a higher probability of human-tick encounters in trails compared to open spaces. Furthermore, we showed that people’s KAP did not change across parks even if parks represented different exposure risks. Our research is a first step towards identifying visitor risk, attitudes, and practices that could be targeted by optimized messaging strategies for tick bite prevention among park visitors. 
    more » « less