Abstract The COVID-19 pandemic and the resulting economic recession negatively affected many people’s physical, social, and psychological health and has been shown to change population-level mobility, but little attention has been given to park visitations as an indicator. Estimating the frequency of park visitations from aggregated mobility data of all the parks in Washington State (USA), we study trends in park use one year prior to and two years during the COVID-19 pandemic. Our findings indicate that the gravity model is a robust model for the park visitation behavior in different spatial resolutions of city level and state level and different socio-economical classes. Incorporating network structure, our detailed analysis highlights that high-income level residents changed their recreational behavior by visiting their local parks more and a broader recreational options outside of their local census area; whereas the low-income residents changed their visitation behavior by reducing their recreational choices. 
                        more » 
                        « less   
                    
                            
                            Park Characteristics and Changes in Park Visitation before, during, and after COVID-19 Shelter-in-Place Order
                        
                    
    
            The COVID-19 pandemic has limited people’s visitation to public places because of social distancing and shelter-in-place orders. According to Google’s community mobility reports, some countries showed a decrease in park visitation during the pandemic, while others showed an increase. Although government responses played a significant role in this variation, little is known about park visitation changes and the park attributes that are associated with these changes. Therefore, we aimed to examine the associations between park characteristics and percent changes in park visitation in Harris County, TX, for three time periods: before, during, and after the shelter-in-place order of Harris County. We utilized SafeGraph’s point-of-interest data to extract weekly park visitation counts for the Harris County area. This dataset included the size of each park and its weekly number of visits from 2 March to 31 May 2020. In addition, we measured park characteristics, including greenness density, using the normalized difference vegetation index; park type (mini, neighborhood, community, regional/metropolitan); presence of sidewalks and bikeways; sidewalk and bikeway quantity; and bikeway quality. Results showed that park visitation decreased after issuing the shelter-in-place order and increased after this order was lifted. Results from linear regression models indicated that the higher the greenness density of the park, the smaller the decrease in park visitation during the shelter-in-place period compared to before the shelter-in-place order. This relationship also appeared after the shelter-in-place order. The presence of more sidewalks was related to less visitation increase after the shelter-in-place order. These findings can guide planners and designers to implement parks that promote public visitation during pandemics and potentially benefit people’s physical and mental health. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1854655
- PAR ID:
- 10340879
- Date Published:
- Journal Name:
- Sustainability
- Volume:
- 14
- Issue:
- 6
- ISSN:
- 2071-1050
- Page Range / eLocation ID:
- 3579
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Abstract Urban nature—such as greenness and parks—can alleviate distress and provide space for safe recreation during the COVID-19 pandemic. However, nature is often less available in low-income populations and communities of colour—the same communities hardest hit by COVID-19. In analyses of two datasets, we quantified inequity in greenness and park proximity across all urbanized areas in the United States and linked greenness and park access to COVID-19 case rates for ZIP codes in 17 states. Areas with majority persons of colour had both higher case rates and less greenness. Furthermore, when controlling for sociodemographic variables, an increase of 0.1 in the Normalized Difference Vegetation Index was associated with a 4.1% decrease in COVID-19 incidence rates (95% confidence interval: 0.9–6.8%). Across the United States, block groups with lower income and majority persons of colour are less green and have fewer parks. Our results demonstrate that the communities most impacted by COVID-19 also have the least nature nearby. Given that urban nature is associated with both human health and biodiversity, these results have far-reaching implications both during and beyond the pandemic.more » « less
- 
            null (Ed.)The sudden outbreak of the COVID-19 pandemic has brought drastic changes to people’s daily lives, work, and the surrounding environment. Investigations into these changes are very important for decision makers to implement policies on economic loss assessments and stimulation packages, city reopening, resilience of the environment, and arrangement of medical resources. In order to analyze the impact of COVID-19 on people’s lives, activities, and the natural environment, this paper investigates the spatial and temporal characteristics of Nighttime Light (NTL) radiance and Air Quality Index (AQI) before and during the pandemic in mainland China. The monthly mean NTL radiance, and daily and monthly mean AQI are calculated over mainland China and compared before and during the pandemic. Our results show that the monthly average NTL brightness is much lower during the quarantine period than before. This study categorizes NTL into three classes: residential area, transportation, and public facilities and commercial centers, with NTL radiance ranges of 5–20, 20–40 and greater than 40 (nW· cm − 2 · sr − 1 ), respectively. We found that the Number of Pixels (NOP) with NTL detection increased in the residential area and decreased in the commercial centers for most of the provinces after the shutdown, while transportation and public facilities generally stayed the same. More specifically, we examined these factors in Wuhan, where the first confirmed cases were reported, and where the earliest quarantine measures were taken. Observations and analysis of pixels associated with commercial centers were observed to have lower NTL radiance values, indicating a dimming behavior, while residential area pixels recorded increased levels of brightness after the beginning of the lockdown. The study also discovered a significant decreasing trend in the daily average AQI for mainland China from January to March 2020, with cleaner air in most provinces during February and March, compared to January 2020. In conclusion, the outbreak and spread of COVID-19 has had a crucial impact on people’s daily lives and activity ranges through the increased implementation of lockdown and quarantine policies. On the other hand, the air quality of mainland China has improved with the reduction in non-essential industries and motor vehicle usage. This evidence demonstrates that the Chinese government has executed very stringent quarantine policies to deal with the pandemic. The decisive response to control the spread of COVID-19 provides a reference for other parts of the world.more » « less
- 
            Abstract Hurricanes are one of the most catastrophic natural hazards faced by residents of the United States. Improving the public’s hurricane preparedness is essential to reduce the impact and disruption of hurricanes on households. Inherent in traditional methods for quantifying and monitoring hurricane preparedness are significant lags, which hinder effective monitoring of residents’ preparedness in advance of an impending hurricane. This study establishes a methodological framework to quantify the extent, timing, and spatial variation of hurricane preparedness at the census block group level using high-resolution location intelligence data. Anonymized cell phone data on visits to points-of-interest for each census block group in Harris County before 2017 Hurricane Harvey were used to examine residents’ hurricane preparedness. Four categories of points-of-interest, grocery stores, gas stations, pharmacies and home improvement stores, were identified as they have close relationship with hurricane preparedness, and the daily number of visits from each CBG to these four categories of POIs were calculated during preparation period. Two metrics, extent of preparedness and proactivity, were calculated based on the daily visit percentage change compared to the baseline period. The results show that peak visits to pharmacies often occurred in the early stage of preparation, whereas the peak of visits to gas stations happened closer to hurricane landfall. The spatial and temporal patterns of visits to grocery stores and home improvement stores were quite similar. However, correlation analysis demonstrates that extent of preparedness and proactivity are independent of each other. Combined with synchronous evacuation data, CBGs in Harris County were divided into four clusters in terms of extent of preparedness and evacuation rate. The clusters with low preparedness and low evacuation rate were identified as hotspots of vulnerability for shelter-in-place households that would need urgent attention during response. Hence, the research findings provide a new data-driven approach to quantify and monitor the extent, timing, and spatial variations of hurricane preparedness. Accordingly, the study advances data-driven understanding of human protective actions during disasters. The study outcomes also provide emergency response managers and public officials with novel data-driven insights to more proactively monitor residents’ disaster preparedness, making it possible to identify under-prepared areas and better allocate resources in a timely manner.more » « less
- 
            Abstract Human mobility is fundamental to a range of applications including epidemic control, urban planning, and traffic engineering. While laws governing individual movement trajectories and population flows across locations have been extensively studied, the predictability of population-level mobility during the COVID-19 pandemic driven by specific activities such as work, shopping, and recreation remains elusive. Here we analyze mobility data for six place categories at the US county level from 2020 February 15 to 2021 November 23 and measure how the predictability of these mobility metrics changed during the COVID-19 pandemic. We quantify the time-varying predictability in each place category using an information-theoretic metric, permutation entropy. We find disparate predictability patterns across place categories over the course of the pandemic, suggesting differential behavioral changes in human activities perturbed by disease outbreaks. Notably, predictability change in foot traffic to residential locations is mostly in the opposite direction to other mobility categories. Specifically, visits to residences had the highest predictability during stay-at-home orders in March 2020, while visits to other location types had low predictability during this period. This pattern flipped after the lifting of restrictions during summer 2020. We identify four key factors, including weather conditions, population size, COVID-19 case growth, and government policies, and estimate their nonlinear effects on mobility predictability. Our findings provide insights on how people change their behaviors during public health emergencies and may inform improved interventions in future epidemics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    