skip to main content


Title: Semantic knowledge management system for design documentation with heterogeneous data using machine learning
Design documentation is presumed to contain massive amounts of valuable information and expert knowledge that is useful for learning from the past successes and failures. However, the current practice of documenting design in most industries does not result in big data that can support a true digital transformation of enterprise. Very little information on concepts and decisions in early product design has been digitally captured, and the access and retrieval of them via taxonomy-based knowledge management systems are very challenging because most rule-based classification and search systems cannot concurrently process heterogeneous data (text, figures, tables, references). When experts retire or leave a design unit, industry often cannot benefit from past knowledge for future product design, and is left to reinvent the wheel repeatedly. In this work, we present AI-based Natural Language Processing (NLP) models which are trained for contextually representing technical documents containing texts, figures and tables, to do a semantic search for the retrieval of relevant data across large corpora of documents. By connecting textual and non-textual data through the use of an associative database, the semantic search question-answering system we developed can provide more comprehensive answers in the context of users’ questions. For the demonstration and assessment of this model, the semantic search question-answering system is applied to the Intergovernmental Panel on Climate Change (IPCC) Special Report 2019, which is more than 600 pages long and difficult to read and understand, even by most experts. Users can input custom queries relating to climate change concerns and receive evidence from the report that is contextually meaningful. We expect this method can transform current repositories of design documentation of heterogeneous data forms into structured knowledge-bases which can return relevant information efficiently as well as can evolve to embody manageable big data for the true digital transformation of design.  more » « less
Award ID(s):
1854833
NSF-PAR ID:
10340890
Author(s) / Creator(s):
; ; ;
Editor(s):
Anwer, Nabil
Date Published:
Journal Name:
32nd CIRP Design Conference (CIRP Design 2022) - Design in a changing world
Volume:
109
Page Range / eLocation ID:
95-100
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synthesizing information from collections of tables embedded within scientific and technical documents is increasingly critical to emerging knowledge-driven applications. Given their structural heterogeneity, highly domain-specific content, and diffuse context, inferring a precise semantic understanding of such tables is traditionally better accomplished through linking tabular content to concepts and entities in reference knowledge graphs. However, existing tabular data discovery systems are not designed to adequately exploit these explicit, human-interpretable semantic linkages. Moreover, given the prevalence of misinformation, the level of confidence in the reliability of tabular information has become an important, often overlooked, factor in the discovery over open datasets. We describe a preliminary implementation of a discovery engine that enables table-based semantic search and retrieval of tabular information from a linked knowledge graph of scientific tables. We discuss the viability of semantics-guided tabular data analysis operations, including on-the-fly table generation under reliability constraints, within discovery scenarios motivated by intelligence production from documents. 
    more » « less
  2. Structured data artifacts such as tables are widely used in scientific literature to organize and concisely communicate important statistical information. Discovering relevant information in these tables remains a significant challenge owing to their structural heterogeneity, dense and often implicit semantics, and diffuse context. This paper describes how we leverage semantic technologies to enable technical experts to search and explore tabular data embedded within scientific documents. We present a system for the on-demand construction of knowledge graphs representing scientific tables (drawn from online scholarly articles hosted by PubMed Central) and for synthesizing tabular responses to semantic search requests against such graphs. We discuss key differentiators in our overall approach, including a two-stage semantic table interpretation that relies on an extensive structural and syntactic characterization of scientific tables and a prototype knowledge discovery engine that uses automatically inferred semantics of scientific tables to serve search requests by potentially fusing information from multiple tables on the fly. We evaluate our system on a real-world dataset of approximately 120,000 tables extracted from over 62,000 COVID-19-related scientific articles. 
    more » « less
  3. Abstract

    Nearly every artifact of the modern engineering design process is digitally recorded and stored, resulting in an overwhelming amount of raw data detailing past designs. Analyzing this design knowledge and extracting functional information from sets of digital documents is a difficult and time-consuming task for human designers. For the case of textual documentation, poorly written superfluous descriptions filled with jargon are especially challenging for junior designers with less domain expertise to read. If the task of reading documents to extract functional requirements could be automated, designers could actually benefit from the distillation of massive digital repositories of design documentation into valuable information that can inform engineering design. This paper presents a system for automating the extraction of structured functional requirements from textual design documents by applying state of the art Natural Language Processing (NLP) models. A recursive method utilizing Machine Learning-based question-answering is developed to process design texts by initially identifying the highest-level functional requirement, and subsequently extracting additional requirements contained in the text passage. The efficacy of this system is evaluated by comparing the Machine Learning-based results with a study of 75 human designers performing the same design document analysis task on technical texts from the field of Microelectromechanical Systems (MEMS). The prospect of deploying such a system on the sum of all digital engineering documents suggests a future where design failures are less likely to be repeated and past successes may be consistently used to forward innovation.

     
    more » « less
  4. An abundance of biomedical data is generated in the form of clinical notes, reports, and research articles available online. This data holds valuable information that requires extraction, retrieval, and transformation into actionable knowledge. However, this information has various access challenges due to the need for precise machine-interpretable semantic metadata required by search engines. Despite search engines' efforts to interpret the semantics information, they still struggle to index, search, and retrieve relevant information accurately. To address these challenges, we propose a novel graph-based semantic knowledge-sharing approach to enhance the quality of biomedical semantic annotation by engaging biomedical domain experts. In this approach, entities in the knowledge-sharing environment are interlinked and play critical roles. Authorial queries can be posted on the "Knowledge Cafe," and community experts can provide recommendations for semantic annotations. The community can further validate and evaluate the expert responses through a voting scheme resulting in a transformed "Knowledge Cafe" environment that functions as a knowledge graph with semantically linked entities. We evaluated the proposed approach through a series of scenarios, resulting in precision, recall, F1-score, and accuracy assessment matrices. Our results showed an acceptable level of accuracy at approximately 90%. The source code for "Semantically" is freely available at: https://github.com/bukharilab/Semantically 
    more » « less
  5. An abundance of biomedical data is generated in the form of clinical notes, reports, and research articles available online. This data holds valuable information that requires extraction, retrieval, and transformation into actionable knowledge. However, this information has various access challenges due to the need for precise machine-interpretable semantic metadata required by search engines. Despite search engines' efforts to interpret the semantics information, they still struggle to index, search, and retrieve relevant information accurately. To address these challenges, we propose a novel graph-based semantic knowledge-sharing approach to enhance the quality of biomedical semantic annotation by engaging biomedical domain experts. In this approach, entities in the knowledge-sharing environment are interlinked and play critical roles. Authorial queries can be posted on the "Knowledge Cafe," and community experts can provide recommendations for semantic annotations. The community can further validate and evaluate the expert responses through a voting scheme resulting in a transformed "Knowledge Cafe" environment that functions as a knowledge graph with semantically linked entities. We evaluated the proposed approach through a series of scenarios, resulting in precision, recall, F1-score, and accuracy assessment matrices. Our results showed an acceptable level of accuracy at approximately 90%. The source code for "Semantically" is freely available at: https://github.com/bukharilab/Semantically 
    more » « less