skip to main content

This content will become publicly available on April 1, 2023

Title: Semantic knowledge management system for design documentation with heterogeneous data using machine learning
Design documentation is presumed to contain massive amounts of valuable information and expert knowledge that is useful for learning from the past successes and failures. However, the current practice of documenting design in most industries does not result in big data that can support a true digital transformation of enterprise. Very little information on concepts and decisions in early product design has been digitally captured, and the access and retrieval of them via taxonomy-based knowledge management systems are very challenging because most rule-based classification and search systems cannot concurrently process heterogeneous data (text, figures, tables, references). When experts retire or leave a design unit, industry often cannot benefit from past knowledge for future product design, and is left to reinvent the wheel repeatedly. In this work, we present AI-based Natural Language Processing (NLP) models which are trained for contextually representing technical documents containing texts, figures and tables, to do a semantic search for the retrieval of relevant data across large corpora of documents. By connecting textual and non-textual data through the use of an associative database, the semantic search question-answering system we developed can provide more comprehensive answers in the context of users’ questions. For the demonstration and assessment of this model, the semantic search question-answering system is applied to more » the Intergovernmental Panel on Climate Change (IPCC) Special Report 2019, which is more than 600 pages long and difficult to read and understand, even by most experts. Users can input custom queries relating to climate change concerns and receive evidence from the report that is contextually meaningful. We expect this method can transform current repositories of design documentation of heterogeneous data forms into structured knowledge-bases which can return relevant information efficiently as well as can evolve to embody manageable big data for the true digital transformation of design. « less
; ; ;
Anwer, Nabil
Award ID(s):
Publication Date:
Journal Name:
32nd CIRP Design Conference (CIRP Design 2022) - Design in a changing world
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nearly every artifact of the modern engineering design process is digitally recorded and stored, resulting in an overwhelming amount of raw data detailing past designs. Analyzing this design knowledge and extracting functional information from sets of digital documents is a difficult and time-consuming task for human designers. For the case of textual documentation, poorly written superfluous descriptions filled with jargon are especially challenging for junior designers with less domain expertise to read. If the task of reading documents to extract functional requirements could be automated, designers could actually benefit from the distillation of massive digital repositories of design documentationmore »into valuable information that can inform engineering design. This paper presents a system for automating the extraction of structured functional requirements from textual design documents by applying state of the art Natural Language Processing (NLP) models. A recursive method utilizing Machine Learning-based question-answering is developed to process design texts by initially identifying the highest-level functional requirement, and subsequently extracting additional requirements contained in the text passage. The efficacy of this system is evaluated by comparing the Machine Learning-based results with a study of 75 human designers performing the same design document analysis task on technical texts from the field of Microelectromechanical Systems (MEMS). The prospect of deploying such a system on the sum of all digital engineering documents suggests a future where design failures are less likely to be repeated and past successes may be consistently used to forward innovation.

    « less
  2. Physical and digital documents often contain visually rich information. With such information, there is no strict order- ing or positioning in the document where the data values must appear. Along with textual cues, these documents often also rely on salient visual features to define distinct semantic boundaries and augment the information they disseminate. When performing information extraction (IE), traditional techniques fall short, as they use a text-only representation and do not consider the visual cues inherent to the layout of these documents. We propose VS2, a generalized approach for information extraction from heterogeneous visually rich documents. There are two majormore »contributions of this work. First, we propose a robust segmentation algorithm that de- composes a visually rich document into a bag of visually iso- lated but semantically coherent areas, called logical blocks. Document type agnostic low-level visual and semantic fea- tures are used in this process. Our second contribution is a distantly supervised search-and-select method for identify- ing the named entities within these documents by utilizing the context boundaries defined by these logical blocks. Ex- perimental results on three heterogeneous datasets suggest that the proposed approach significantly outperforms its text-only counterparts on all datasets. Comparing it against the state-of-the-art methods also reveal that VS2 performs comparably or better on all datasets.« less
  3. Outside-knowledge visual question answering (OKVQA) requires the agent to comprehend the image, make use of relevant knowledge from the entire web, and digest all the information to answer the question. Most previous works address the problem by first fusing the image and question in the multi-modal space, which is inflexible for further fusion with a vast amount of external knowledge. In this paper, we call for an alternative paradigm for the OK-VQA task, which transforms the image into plain text, so that we can enable knowledge passage retrieval, and generative question-answering in the natural language space. This paradigm takes advantagemore »of the sheer volume of gigantic knowledge bases and the richness of pretrained language models. A Transform-Retrieve-Generate framework (TRiG) framework is proposed, which can be plug-and-played with alternative image-to-text models and textual knowledge bases. Experimental results show that our TRiG framework outperforms all state-of-the-art supervised methods by at least 11.1% absolute margin.« less
  4. The first major goal of this project is to build a state-of-the-art information storage, retrieval, and analysis system that utilizes the latest technology and industry methods. This system is leveraged to accomplish another major goal, supporting modern search and browse capabilities for a large collection of tweets from the Twitter social media platform, web pages, and electronic theses and dissertations (ETDs). The backbone of the information system is a Docker container cluster running with Rancher and Kubernetes. Information retrieval and visualization is accomplished with containers in a pipelined fashion, whether in the cluster or on virtual machines, for Elasticsearch andmore »Kibana, respectively. In addition to traditional searching and browsing, the system supports full-text and metadata searching. Search results include facets as a modern means of browsing among related documents. The system supports text analysis and machine learning to reveal new properties of collection data. These new properties assist in the generation of available facets. Recommendations are also presented with search results based on associations among documents and with logged user activity. The information system is co-designed by five teams of Virginia Tech graduate students, all members of the same computer science class, CS 5604. Although the project is an academic exercise, it is the practice of the teams to work and interact as though they are groups within a company developing a product. The teams on this project include three collection management groups -- Electronic Theses and Dissertations (ETD), Tweets (TWT), and Web-Pages (WP) -- as well as the Front-end (FE) group and the Integration (INT) group to help provide the overarching structure for the application. This submission focuses on the work of the Integration (INT) team, which creates and administers Docker containers for each team in addition to administering the cluster infrastructure. Each container is a customized application environment that is specific to the needs of the corresponding team. Each team will have several of these containers set up in a pipeline formation to allow scaling and extension of the current system. The INT team also contributes to a cross-team effort for exploring the use of Elasticsearch and its internally associated database. The INT team administers the integration of the Ceph data storage system into the CS Department Cloud and provides support for interactions between containers and the Ceph filesystem. During formative stages of development, the INT team also has a role in guiding team evaluations of prospective container components and workflows. The INT team is responsible for the overall project architecture and facilitating the tools and tutorials that assist the other teams in deploying containers in a development environment according to mutual specifications agreed upon with each team. The INT team maintains the status of the Kubernetes cluster, deploying new containers and pods as needed by the collection management teams as they expand their workflows. This team is responsible for utilizing a continuous integration process to update existing containers. During the development stage the INT team collaborates specifically with the collection management teams to create the pipeline for the ingestion and processing of new collection documents, crossing services between those teams as needed. The INT team develops a reasoner engine to construct workflows with information goal as input, which are then programmatically authored, scheduled, and monitored using Apache Airflow. The INT team is responsible for the flow, management, and logging of system performance data and making any adjustments necessary based on the analysis of testing results. The INT team has established a Gitlab repository for archival code related to the entire project and has provided the other groups with the documentation to deposit their code in the repository. This repository will be expanded using Gitlab CI in order to provide continuous integration and testing once it is available. Finally, the INT team will provide a production distribution that includes all embedded Docker containers and sub-embedded Git source code repositories. The INT team will archive this distribution on the Virginia Tech Docker Container Registry and deploy it on the Virginia Tech CS Cloud. The INT-2020 team owes a sincere debt of gratitude to the work of the INT-2019 team. This is a very large undertaking and the wrangling of all of the products and processes would not have been possible without their guidance in both direct and written form. We have relied heavily on the foundation they and their predecessors have provided for us. We continue their work with systematic improvements, but also want to acknowledge their efforts Ibid. Without them, our progress to date would not have been possible.« less
  5. Information retrieval systems are evolving from document retrieval to answer retrieval. Web search logs provide large amounts of data about how people interact with ranked lists of documents, but very little is known about interaction with answer texts. In this paper, we use Amazon Mechanical Turk to investigate three answer presentation and interaction approaches in a non-factoid question answering setting. We find that people perceive and react to good and bad answers very differently, and can identify good answers relatively quickly. Our results provide the basis for further investigation of effective answer interaction and feedback methods.