skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The effects of plate interface rheology on subduction kinematics and dynamics
SUMMARY Tectonic plate motions predominantly result from a balance between the potential energy change of the subducting slab and viscous dissipation in the mantle, bending lithosphere and slab–upper plate interface. A wide range of observations from active subduction zones and exhumed rocks suggest that subduction interface shear zone rheology is sensitive to the composition of subducting crustal material—for example, sediments versus mafic igneous oceanic crust. Here we use 2-D numerical models of dynamically consistent subduction to systematically investigate how subduction interface viscosity influences large-scale subduction kinematics and dynamics. Our model consists of an oceanic slab subducting beneath an overriding continental plate. The slab includes an oceanic crustal/weak layer that controls the rheology of the interface. We implement a range of slab and interface strengths and explore how the kinematics respond for an initial upper mantle slab stage, and subsequent quasi-steady-state ponding near a viscosity jump at the 660-km-discontinuity. If material properties are suitably averaged, our results confirm the effect of interface strength on plate motions as based on simplified viscous dissipation analysis: a ∼2 order of magnitude increase in interface viscosity can decrease convergence speeds by ∼1 order of magnitude. However, the full dynamic solutions show a range of interesting behaviour including an interplay between interface strength and overriding plate topography and an end-member weak interface-weak slab case that results in slab break-off/tearing. Additionally, for models with a spatially limited, weak sediment strip embedded in regular interface material, as might be expected for the subduction of different types of oceanic materials through Earth’s history, the transient response of enhanced rollback and subduction velocity is different for strong and weak slabs. Our work substantiates earlier suggestions as to the importance of the plate interface, and expands the range of quantifiable links between plate reorganizations, the nature of the incoming and overriding plate and the potential geological record.  more » « less
Award ID(s):
1925939 2119844 2119843 2119842
PAR ID:
10340949
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Geophysical Journal International
Volume:
230
Issue:
2
ISSN:
0956-540X
Page Range / eLocation ID:
796 to 812
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Tonga‐Kermadec subduction zone exhibits the fastest observed trench retreat and convergence near its northern end. However, a paradox exists: despite the rapid trench retreat, the Tonga slab maintains a relatively steep dip angle above 400 km depth. The slab turns flat around 400 km, then steepening again until encountering a stagnant segment near 670 km. Despite its significance for understanding slab dynamics, no existing numerical model has successfully demonstrated how such a distinct slab morphology can be generated under the fast convergence. Here we run subduction models that successfully reproduce the slab geometries while incorporating the observed subduction rate. We use a hybrid velocity boundary condition, imposing velocities on the arc and subducting plate while allowing the overriding plate to respond freely. This approach is crucial for achieving a good match between the modeled and observed Tonga slab. The results explain how the detailed slab structure is highly sensitive to physical parameters including the seafloor age and the mantle viscosity. Notably, a nonlinear rheology, where dislocation creep reduces upper mantle viscosity under strong mantle flow, is essential. The weakened upper mantle allows for a faster slab sinking rate, which explains the large dip angle. Our findings highlight the utilizing rheological parameters that lead to extreme viscosity variations within numerical models to achieve an accurate representation of complex subduction systems like the Tonga‐Kermadec zone. Our study opens new avenues for further study of ocean‐ocean subduction systems, advancing our understanding of their role in shaping regional and global tectonics. 
    more » « less
  2. Abstract Simulating present‐day solid Earth deformation and volatile cycling requires integrating diverse geophysical data sets and advanced numerical techniques to model complex multiphysics processes at high resolutions. Subduction zone modeling is particularly challenging due to the large geographic extent, localized deformation zones, and the strong feedbacks between reactive fluid transport and solid deformation. Here, we develop new workflows for simulating 3‐dimensional thermal‐mechanical subduction and patterns of volatile dehydration at convergent margins, adaptable to include reactive fluid transport. We apply these workflows to the Hikurangi margin, where recent geophysical investigations have offered unprecedented insight into the structure and processes coupling fluid transport and solid deformation across broad spatiotemporal scales. Geophysical data sets constraining the downgoing and overriding plate structure are collated with the Geodynamic World Builder, which provides the initial conditions for forward simulations using the open‐source geodynamic modeling software code ASPECT. We systematically examine how plate interface rheology and hydration of the downgoing plate and upper mantle influence Pacific–Australian convergence and seismic anisotropy. Models prescribing a plate boundary viscosity of Pa s best reproduce observed plate velocities, and changing the configuration of the Pacific–Australia plate boundary directly influences the modeled plate motions. Models considering hydrated olivine fabrics best reproduce observations of seismic anisotropy. Predicted patterns of slab dehydration and mantle melting correlate well with observations of seismic attenuation and arc volcanism. These results suggest that hydration‐related rheological heterogeneity and related fluid weakening may strongly influence slab dynamics. Future investigations integrating coupled fluid transport and global mantle flow will provide insight into the feedbacks between subduction dynamics, fluid pathways, and arc volcanism. 
    more » « less
  3. Ruppert, Natalia A; Jadamec, Margarete A; Freymueller, Jeffrey T (Ed.)
    Long-lived continental magmatic arcs may migrate large (hundreds of kilometers) trench perpendicular distances as convergent margin configurations and slab geometry vary over time; however, many arc-magmatic belts are spatially localized over tens of millions of years.We document, by compiling published crystallization geochronology data for southern Alaska (6,485 total bedrock and single-grain detrital ages combined), that since ca. 100 Ma, arc magmatism has been localized along the Alaska Range suture zone (in places within a 10km × 5km swath) and at times over 500km inboard. However, since ca. 100 Ma, incoming subducting slab characteristics and convergent margin configurations varied greatly and include both normal oceanic plate and oceanic plateau subduction, plate vector changes, oroclinal bending and reconfiguration of trench shape, terrane accretion, long-distance terrane translation, and a Paleocene slab break off/slab window event. Therefore, it is inferred that inherited upper-plate lithospheric thickness and thermal variations must control in part the geometry of the subducting slab below a mobile southern Alaskan margin through hydrodynamic mantle wedge “suction” forces. Additionally, crustal thickness heterogeneity may focus magma ascent through melt ponding along Moho offsets, and upper-plate lithospheric-scale strike-slip faults may be acting as passive and active conduits for arc magmatism. 
    more » « less
  4. The Cascadia subduction zone, where the young and thin oceanic Juan de Fuca plate sinks beneath western North America, represents a thermally hot endmember of global subduction systems. Cascadia exhibits complex and three-dimensional heterogeneities including variable coupling between the overriding and downgoing plates, the amount of water carried within and released by the oceanic plate, flow patterns within the mantle wedge and backarc, and the continuity and depth extent of the subducting slab. While recent research has benefitted from extensive onshore and offshore deployments of geophysical instrumentation, a consensus on many important aspects of Cascadia’s magmatic, tectonic, and geodynamic setting remains elusive. 
    more » « less
  5. Abstract The along‐strike variations of the velocity, thickness, and dip of subducting slabs and the volcano distribution have been observed globally. It is, however, unclear what controls the distribution of volcanoes and the associated magma generation. With the presence of nonuniform volcanism, the Aleutian‐Alaska subduction zone (AASZ) is an ideal place to investigate subduction segmentation and its relationship with volcanism. Using full‐wave ambient noise tomography, we present a high‐resolution 3‐D shear wave velocity model of the AASZ for the depths of 15–110 km. The velocity model reveals the distinct high‐velocity Pacific slab, the thicker, flatter, and more heterogeneous Yakutat slab, and the northeasterly dipping Wrangell slab. We observe low velocities within the uppermost mantle (at depth <60 km) below the Aleutian arc volcanoes, representing partial melt accumulation. The large crustal low‐velocity anomaly beneath the Wrangell volcanic field suggests a large magma reservoir, likely responsible for the clustering of volcanoes. The Denali volcanic gap is above an average‐velocity crust but an extremely fast mantle wedge, suggesting the lack of subsurface melt. This is in contrast with the lower‐velocity back‐arc mantle beneath the adjacent Buzzard Creek‐Jumbo Dome volcanoes to the east. The back‐arc low velocities associated with the Pacific, the eastern Yakutat, and the Wrangell slabs may reflect subduction‐driven mantle upwelling. The structural variation of the downgoing slabs and the overriding plate explains the change of volcanic activity along the AASZ. Our findings demonstrate the combined role of the subducting slab and the overriding plate in controlling the characteristics of arc magmatism. 
    more » « less