skip to main content


Title: On the Kármán momentum-integral approach and the Pohlhausen paradox: Extension to a cylinder in crossflow with a potential farfield motion
In this work, the Kármán–Pohlhausen (KP) momentum-integral approach based on optimized fourth-order (MX4) polynomial approximations of the velocity and temperature profiles is applied to a classical benchmark problem, namely, that of a cylinder in crossflow with a variable pressure gradient. This enables us to extract closed-form expressions for both hydrodynamic and thermal boundary-layer parameters and then compare the newly found solutions to their counterparts obtained using Pohlhausen's cubic (KP3) and quartic (KP4) polynomials. As usual, the farfield around the cylinder is modeled using potential flow theory and the momentum-integral analysis is paired with Walz's empirical expression for the momentum thickness, which is based on a wide collection of experiments. This procedure permits retrieving explicit relations for the pressure-sensitive KP3, KP4, and MX4 velocity profiles across the boundary layer; one also obtains accurate approximations for the pressure distribution around the cylinder as well as an improved prediction of the separation point, namely, to within 0.87% of the actual location. In this process, refined estimates are produced for several characteristic parameters whose distributions are found to be in favorable agreement with experimental measurements and numerical simulations. These include the disturbance, momentum, and displacement thicknesses as well as the skin friction, pressure, and total drag coefficients. Finally, the thermal analysis is undertaken using both isothermal and isoflux boundary conditions. For each of these cases, closed-form analytical solutions are obtained for the local Nusselt number distribution around the cylinder, and these distributions are found to exhibit noticeably reduced errors relative to their classical values.  more » « less
Award ID(s):
1761675
PAR ID:
10340984
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Physics of Fluids
Volume:
34
Issue:
6
ISSN:
1070-6631
Page Range / eLocation ID:
063107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper focuses on the laminar boundary layer startup process (momentum and thermal) in incompressible flows. The unsteady boundary layer equations can be solved via similarity analysis by normalizing the stream-wise (x), wall-normal (y) and time (t) coordinates by a variable η and τ, respectively. The resulting ODEs are solved by a finite difference explicit algorithm. This can be done for two cases: flat plate flow where the change in pressure are zero (Blasius solution) and wedge or Falkner-Skan flow where the changes in pressure can be favorable (FPG) or adverse (APG). In addition, transient passive scalar transport is examined by setting several Prandtl numbers in the governing equation at two different wall thermal conditions: isothermal and isoflux. Numerical solutions for the transient evolution of the momentum and thermal boundary layer profiles are compared with analytical approximations for both small times (unsteady flow) and large (steady-state flow) times. 
    more » « less
  2. The laminar boundary layer of a viscous incompressible fluid subject to a two-dimensional wall curvature is evaluated. It is well known that a curved surface induces streamwise pressure gradient as well as wall curvature driven pressure gradient. Under certain assumptions, a family of similarity solutions can be obtained under the influence of flow acceleration/deceleration, which is known as the Falkner-Skan similarity solutions. In this study, the effect of the wall normal pressure gradient is taken into consideration, and the freestream flow parameters are adjusted for flow over a curved surface. Present results are obtained by numerical solution of a generalized Falkner-Skan equation governing similar solutions for flows over curved surfaces. The Falkner-Skan equations are solved by an RK4 shooting algorithm. Additionally, the transport of a passive scalar is incorporated in the present analysis at different Prandtl numbers. The objective of this paper is to use the curvilinear or axisymmetric boundary layer and energy equations to assess the effect of Favorable, Adverse and Zero pressure gradient on the laminar momentum and thermal boundary layer development. Major conclusions are summarized as follows: (i) as the pressure gradient β increases from negative values (APG) towards positive (FPG) values, the displacement (Δ∗) and momentum (θ∗) thickness tend to decrease no matter the curvature type, and, (ii) the normalized wall shear stress (i.e., f′′) exhibits a linear decreasing behavior as the wall curvature switches from concave (negative) to convex (positive) at a constant pressure gradient. 
    more » « less
  3. Shear sheltering is defined as the effect of the mean flow velocity profile in a boundary layer on the turbulence caused by an imposed gust. It has been studied extensively in applications involving boundary layer transition, where the primary concern is flow instabilities that are enhanced by turbulence in the flow outside the boundary layer. In aeroacoustic applications turbulent boundary layers interacting with blade trailing edges or roughness elements are an important source of sound, and the effect of shear sheltering on these noise sources has not been studied in detail. Since the surface pressure spectrum below the boundary layer is the primary driver of trailing edge and roughness noise, we will consider the effect that shear sheltering has on the surface pressure spectrum below a boundary layer. We will model the incoming turbulence as vortex sheets at specified heights above the surface and show, using classical boundary layer profiles and approximations to numerical results, how the mean flow velocity can be manipulated to alter the surface pressure spectrum and hence the radiated trailing edge noise. 
    more » « less
  4. Recent studies reveal that at large friction Reynolds number delta^+ the outer, inertially-dominated region of the turbulent boundary layer is composed of large scale zones of uniform momentum segregated by narrow fissures of concentrated vorticity. Experiments show that, when scaled by the boundary layer thickness, the fissure thickness is O(1/sqrt{delta^+}), while the dimensional jump in streamwise velocity across each fissure scales in proportion to the friction velocity u_tau. A simple model that exploits these essential elements of the turbulent boundary layer structure at large delta^+ is developed. First, a master wall-normal profile of streamwise velocity is constructed by placing a discrete number of fissures across the boundary layer. The number of fissures and their wall-normal locations follow scalings informed by analysis of the mean momentum equation. The fissures are then randomly displaced in the wall-normal direction, exchanging momentum as they move, to create an instantaneous velocity profile. This process is repeated to generate ensembles of streamwise velocity profiles from which statistical moments are computed. The modelled statistical moments are shown to agree remarkably well with those acquired from direct numerical simulations of turbulent channel flow at large delta^+. In particular, the model robustly reproduces the empirically observed sub-Gaussian behaviour for the skewness and kurtosis profiles over a large range of input parameters. 
    more » « less
  5. A new Anechoic Wall Jet Wind Tunnel was built at Virginia Tech. A detailed design based on the old wall jet tunnel was done to improve the quality of the resultant flow. Aerodynamic and acoustic calibrations were performed in order to understand properties and characteristics of the flow generated by this new facility which can be used for various aeroacoustic studies. Far-field acoustics were measured using half-inch B&K microphones in a streamwise array to characterize and reduce the background noise. Sound pressure levels were lower by 10 dB for frequencies up to 700Hz in comparison to the old facility. The turbulent surface pressure fluctuations of the wall-jet flow were studied using Sennheiser microphones placed along streamwise and spanwise locations to record surface pressure fluctuations. Comparison of the autocorrelation plotted for microphones along the same span indicate uniform flow features. A decay in the turbulence levels is observed along the downstream direction as expected. Aerodynamic calibrations included mean velocity measurements along different spanwise locations, wall-jet boundary layer profiles and streamwise cross-sections. Spanwise and cross-sectional velocity profiles show good uniformity of the flow. Detailed boundary layer analyses were performed with the parameters obtained from the experiments. 
    more » « less