skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Jaqen: A High-Performance Switch-Native Approach for Detecting and Mitigating Volumetric DDoS Attacks with Programmable Switches
The emergence of programmable switches offers a new opportunity to revisit ISP-scale defenses for volumetric DDoS attacks. In theory, these can offer better cost vs. performance vs. flexibility trade-offs relative to proprietary hardware and virtual appliances. However, the ISP setting creates unique challenges in this regard---we need to run a broad spectrum of detection and mitigation functions natively on the programmable switch hardware and respond to dynamic adaptive attacks at scale. Thus, prior efforts in using programmable switches that assume out-of-band detection and/or use switches merely as accelerators for specific tasks are no longer sufficient, and as such, this potential remains unrealized. To tackle these challenges, we design and implement Jaqen, a switch-native approach for volumetric DDoS defense that can run detection and mitigation functions entirely inline on switches, without relying on additional data plane hardware. We design switch-optimized, resource-efficient detection and mitigation building blocks. We design a flexible API to construct a wide spectrum of best-practice (and future) defense strategies that efficiently use switch capabilities. We build a network-wide resource manager that quickly adapts to the attack posture changes. Our experiments show that Jaqen is orders of magnitude more performant than existing systems: Jaqen can handle large-scale hybrid and dynamic attacks within seconds, and mitigate them effectively at high line-rates (380 Gbps).  more » « less
Award ID(s):
1918757
PAR ID:
10341117
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
30th USENIX Security Symposium (USENIX Security 21)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The emergence of programmable switches offers a new opportunity to revisit ISP-scale defenses for volumetric DDoS attacks. In theory, these can offer better cost vs. performance vs. flexibility trade-offs relative to proprietary hardware and virtual appliances. However, the ISP setting creates unique challenges in this regard---we need to run a broad spectrum of detection and mitigation functions natively on the programmable switch hardware and respond to dynamic adaptive attacks at scale. Thus, prior efforts in using programmable switches that assume out-of-band detection and/or use switches merely as accelerators for specific tasks are no longer sufficient, and as such, this potential remains unrealized. To tackle these challenges, we design and implement Jaqen, a switch-native approach for volumetric DDoS defense that can run detection and mitigation functions entirely inline on switches, without relying on additional data plane hardware. We design switch-optimized, resource-efficient detection and mitigation building blocks. We design a flexible API to construct a wide spectrum of best-practice (and future) defense strategies that efficiently use switch capabilities. We build a network-wide resource manager that quickly adapts to the attack posture changes. Our experiments show that Jaqen is orders of magnitude more performant than existing systems: Jaqen can handle large-scale hybrid and dynamic attacks within seconds, and mitigate them effectively at high line-rates (380 Gbps). 
    more » « less
  2. As increasingly complex and dynamic volumetric DDoS attacks continue to wreak havoc on edge networks, two recent developments promise to bolster DDoS defense at the edge. First, programmable switches have emerged as promising means for achieving scalable and cost-effective attack signature detection. However, their practical application in edge networks remains a challenging open problem. Second, machine learning (ML)-based solutions have demonstrated potential in accurately detecting attack signatures based on per-flow traffic features. Yet, their inability to effectively scale to the traffic volumes and number of flows in actual production edge networks has largely excluded them from practical considerations.In this paper, we introduce ZAPDOS, a novel approach to accurately, quickly, and scalably detect volumetric DDoS attack signatures at the source prefix level. ZAPDOS is the first to utilize a key characteristic of the observed structure of measured attack and benign source prefixes (i.e., a pronounced cluster-within-cluster property) and effectively apply it in practice against modern attacks. ZAPDOS operates by monitoring aggregate prefix-level features in switch hardware, employing a learning model to identify prefixes suspected of containing attack sources, and using several innovative algorithmic methods to pinpoint attack sources efficiently. We have built a hardware prototype of ZAPDOS and a packet-level software simulator which achieves comparable accuracy results. Since existing datasets are inadequate for training and evaluating prefix-level models, we have developed a new data-fusion methodology for training and evaluating ZAPDOS. We use our prototype and simulator to show that ZAPDOS can detect volumetric DDoS attack signatures with orders of magnitude lower error rates than state-of-the-art under comparable monitoring resource budgets and for a range of different attack scenarios. 
    more » « less
  3. Despite advances in network security, attacks targeting mission critical systems and applications remain a significant problem for network and datacenter providers. Existing telemetry platforms detect volumetric attacks at terabit scales using approximation techniques and coarse grain analysis. However, the prevalence of low and slow attacks that require very little bandwidth, makes flow-state tracking critical to overall attack mitigation. Traffic queries deployed on network switches are often limited by hardware constraints, preventing them from carrying out flow tracking features required to detect stealthy attacks. Such attacks can go undetected in the midst of high traffic volumes. We design SmartWatch, a novel flow state tracking and flow logging system at line rate, using SmartNICs to optimize performance and simultaneously detect a number of stealthy attacks. SmartWatch leverages advances in switch based network telemetry platforms to process the bulk of the traffic and only forward suspicious traffic subsets to the SmartNIC. The programmable network switches perform coarse-grained traffic analysis while the SmartNIC conducts the finer-grained analysis which involves additional processing of the packet as a 'bump-in-the-wire'. A control loop between the SmartNIC and programmable switch tunes the queries performed in the switch to direct the most appropriate traffic subset to the SmartNIC. SmartWatch's cooperative monitoring approach yields 2.39 times better detection rate compared to existing platforms deployed on programmable switches. SmartWatch can detect covert timing channels and perform website fingerprinting more efficiently compared to standalone programmable switch solutions, relieving switch memory and control-plane processor resources. Compared to host-based approaches, SmartWatch can reduce the packet processing latency by 72.32%. 
    more » « less
  4. Distributed denial of service (DDoS) attacks have been prevalent on the Internet for decades. Albeit various defenses, they keep growing in size, frequency, and duration. The new network paradigm, Software-defined networking (SDN), is also vulnerable to DDoS attacks. SDN uses logically centralized control, bringing the advantages in maintaining a global network view and simplifying programmability. When attacks happen, the control path between the switches and their associated controllers may become congested due to their limited capacity. However, the data plane visibility of SDN provides new opportunities to defend against DDoS attacks in the cloud computing environment. To this end, we conduct measurements to evaluate the throughput of the software control agents on some of the hardware switches when they are under attacks. Then, we design a new mechanism, calledScotch, to enable the network to scale up its capability and handle the DDoS attack traffic. In our design, the congestion works as an indicator to trigger the mitigation mechanism.Scotchelastically scales up the control plane capacity by using an Open vSwitch-based overlay.Scotchtakes advantage of both the high control plane capacity of a large number of vSwitches and the high data plane capacity of commodity physical switches to increase the SDN network scalability and resiliency under abnormal (e.g., DDoS attacks) traffic surges. We have implemented a prototype and experimentally evaluatedScotch. Our experiments in the small-scale lab environment and large-scale GENI testbed demonstrate thatScotchcan elastically scale up the control channel bandwidth upon attacks. 
    more » « less
  5. A Distributed Denial of Service (DDoS) attack is an attempt to make an online service, a network, or even an entire organization, unavailable by saturating it with traffic from multiple sources. DDoS attacks are among the most common and most devastating threats that network defenders have to watch out for. DDoS attacks are becoming bigger, more frequent, and more sophisticated. Volumetric attacks are the most common types of DDoS attacks. A DDoS attack is considered volumetric, or high-rate, when within a short period of time it generates a large amount of packets or a high volume of traffic. High-rate attacks are well-known and have received much attention in the past decade; however, despite several detection and mitigation strategies have been designed and implemented, high-rate attacks are still halting the normal operation of information technology infrastructures across the Internet when the protection mechanisms are not able to cope with the aggregated capacity that the perpetrators have put together. With this in mind, the present paper aims to propose and test a distributed and collaborative architecture for online high-rate DDoS attack detection and mitigation based on an in-memory distributed graph data structure and unsupervised machine learning algorithms that leverage real-time streaming data and analytics. We have successfully tested our proposed mechanism using a real-world DDoS attack dataset at its original rate in pursuance of reproducing the conditions of an actual large scale attack. 
    more » « less