skip to main content


Title: Compound Effects of Flood Drivers, Sea Level Rise, and Dredging Protocols on Vessel Navigability and Wetland Inundation Dynamics
Maritime transportation is crucial to national economic development as it offers a low-cost, safe, and efficient alternative for movement of freight compared to its land or air counterparts. River and channel dredging protocols are often adopted in many ports and harbors of the world to meet the increasing demand for freight and ensure safe passage of larger vessels. However, such protocols may have unintended adverse consequences on flood risks and functioning of coastal ecosystems and thereby compromising the valuable services they provide to society and the environment. This study analyzes the compound effects of dredging protocols under a range of terrestrial and coastal flood drivers, including the effects of sea level rise (SLR) on compound flood risk, vessel navigability, and coastal wetland inundation dynamics in Mobile Bay (MB), Alabama. We develop a set of hydrodynamic simulation scenarios for a range of river flow and coastal water level regimes, SLR projections, and dredging protocols designed by the U.S. Army Corps of Engineers. We show that channel dredging helps increase bottom (‘underkeel’) clearances by a factor of 3.33 under current mean sea level and from 4.20 to 4.60 under SLR projections. We find that both low and high water surface elevations (WSEs) could be detrimental, with low WSE (< -1.22 m) hindering safe navigation whereas high WSE (> 0.87 m) triggering minor to major flooding in the surrounding urban and wetland areas. Likewise, we identify complex inundation patterns emerging from nonlinear interactions of SLR, flood drivers, and dredging protocols, and additionally estimate probability density functions (PDFs) of wetland inundation. We show that changes in mean sea level due to SLR diminish any effects of channel dredging on wetland inundation dynamics and shift the PDFs beyond pre-established thresholds for moderate and major flooding. In light of our results, we recommend the need for integrated analyses that account for compound effects on vessel navigation and wetland inundation, and provide insights into environmental-friendly solutions for increasing cargo transportation.  more » « less
Award ID(s):
1856054
NSF-PAR ID:
10341145
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
9
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Compound flooding frequently threatens life and assets of people who live in low‐lying coastal regions. Co‐occurrence or sequence of extremes (e.g., high river discharge and extreme coastal water level) is of paramount importance as it may result in flood hazards with potential impacts larger than each extreme in isolation. Here, we use a coupled approach, that is, bivariate statistical analysis linked to hydrodynamic modeling, to quantify compounding effects of flood drivers and generate flood hazard maps near Savannah, Georgia. Also, we integrate wetland elevation correction in digital elevation models to improve hydrodynamic simulations of compound events and hence the accuracy of flood hazard (inundation and velocity) maps. Using statistical measures, we analyze compounding effects of terrestrial/coastal flood drivers and wetland elevation correction on maximum floodwater height (MFH) and velocity (MFV) for 50‐year return period scenarios. In addition, we compare our results to MFH and MFV patterns of Hurricane Matthew that hit the West Atlantic Coasts on October 2016. The statistical measures indicate significant differences among the scenarios, partly explained by wetland elevation correction. Inundation and velocity maps suggest that a proposed composite, that is, synthesis of marginalQ, marginalH, and “AND” scenarios, can lead to the lowest average underestimation of MFH (−0.35 m) and overestimation of MFV (0.20 m/s) within wetland areas. We conclude that a thorough compound flooding assessment should leverage statistical analysis and hydrodynamic modeling of extremes including corrections of coastal digital elevation models.

     
    more » « less
  2. Abstract

    The cooccurrence of coastal and riverine flooding leads to compound events with substantial impacts on people and property in low‐lying coastal areas. Climate change could increase the level of compound flood hazard through higher extreme sea levels and river flows. Here, a bivariate flood hazard assessment method is proposed to estimate compound coastal‐riverine frequency under current and future climate conditions. A copula‐based approach is used to estimate the joint return period (JRP) of compound floods by incorporating sea‐level rise (SLR) and changes in peak river flows into the marginal distributions of flood drivers. Specifically, the changes in JRP of compound major coastal‐riverine flooding defined based on simultaneous exceedances above major coastal and riverine thresholds, are explored by midcentury. Subsequently, the increase in the probability of occurrence of at least one compound major coastal‐riverine flooding for a given period of time is quantified. The proposed compound flood hazard assessment is conducted at 26 paired tidal‐riverine stations along the Contiguous United States coast with long‐term data and defined flood thresholds. We show that the northeast Atlantic and the western part of the Gulf coasts are experiencing the highest compound major coastal‐riverine flood probability under current conditions. However, future SLR scenarios show the highest frequency amplification along the southeast Atlantic coast. The impact of changes in peak river flows is found to be considerably less than that of SLR. Climate change impacts, especially SLR, may lead to more frequent compound events, which cannot be ignored for future adaptation responses in estuary regions.

     
    more » « less
  3. null (Ed.)
    Abstract Sea level rise (SLR) and tropical cyclone (TC) climatology change could impact future flood hazards in Jamaica Bay—an urbanized back-barrier bay in New York—yet their compound impacts are not well understood. This study estimates the compound effects of SLR and TC climatology change on flood hazards in Jamaica Bay from a historical period in the late twentieth century (1980–2000) to future periods in the mid- and late-twenty-first century (2030–2050 and 2080–2100, under RCP8.5 greenhouse gas concentration scenario). Flood return periods are estimated based on probabilistic projections of SLR and peak storm tides simulated by a hydrodynamic model for large numbers of synthetic TCs. We find a substantial increase in the future flood hazards, e.g., the historical 100-year flood level would become a 9- and 1-year flood level in the mid- and late-twenty-first century and the 500-year flood level would become a 143- and 4-year flood level. These increases are mainly induced by SLR. However, TC climatology change would considerably contribute to the future increase in low-probability, high-consequence flood levels (with a return period greater than 100 year), likely due to an increase in the probability of occurrence of slow-moving but intense TCs by the end of twenty-first century. We further conduct high-resolution coastal flood simulations for a series of SLR and TC scenarios. Due to the SLR projected with a 5% exceedance probability, 125- and 1300-year flood events in the late-twentieth century would become 74- and 515-year flood events, respectively, in the late-twenty-first century, and the spatial extent of flooding over coastal floodplains of Jamaica Bay would increase by nearly 10 and 4 times, respectively. In addition, SLR leads to larger surface waves induced by TCs in the bay, suggesting a potential increase in hazards associated with wave runup, erosion, and damage to coastal infrastructure. 
    more » « less
  4. The research on coastal hazards predicts substantial adverse impacts of chronic and episodic flooding on populated coastal areas. Despite the growing evidence about anticipated flood risks, many coastal communities are still not adapting. The observed disconnect between science on physical impacts and adaptation decisionmaking in part reflects stakeholders’ inability to envision the implications of these impacts on socioeconomic systems and the built environment in their jurisdictions. This inertia is particularly apparent in the discourse on flood-driven displacement and relocation. There is a lack of knowledge about direct and indirect flood impacts on community attributes and services that contribute to relocation decision-making. This study holistically evaluates the flood exposure on municipal features vital for socioeconomic stability, livelihoods, and quality of life across spatiotemporal scales. As such, it uses a more nuanced approach to relocation risk assessment than those solely focused on direct inundation impacts. It measures flood exposure of land use, land cover, and sociocultural and economic dimensions that are important drivers of relocation in selected rural and urban areas. The approach uses a 50-year floodplain to delineate populated coastal locations exposed to 2% Annual Exceedance Probability (AEP) storm surge projections adjusted for 2030, 2060, and 2090 sea level rise (SLR) scenarios. It then evaluates the potential impacts of this flood exposure on different types of land uses and critical socioeconomic assets in rural (Dorchester and Talbot Counties, Maryland, USA) and urban (Cities of Hampton, Norfolk, Portsmouth, and Virginia Beach, Virginia, USA) settings. The results show that some urban land uses, such as open space, military and mixed-use, and rural residential and commercial areas, might experience significantly more flooding. There are also notable differences in the baseline flood exposure and the anticipated rate and acceleration in the future among selected communities with significant implications for relocation planning. 
    more » « less
  5. null (Ed.)
    Compound flooding is a physical phenomenon that has become more destructive in recent years. Moreover, compound flooding is a broad term that envelops many different physical processes that can range from preconditioned, to multivariate, to temporally compounding, or spatially compounding. This research aims to analyze a specific case of compound flooding related to tropical cyclones where the compounding effect is on coastal flooding due to a combination of storm surge and river discharge. In recent years, such compound flood events have increased in frequency and magnitude, due to a number of factors such as sea-level rise from warming oceans. Therefore, the ability to model such events is of increasing urgency. At present, there is no holistic, integrated modeling system capable of simulating or forecasting compound flooding on a large regional or global scale, leading to the need to couple various existing models. More specifically, two more challenges in such a modeling effort are determining the primary model and accounting for the effect of adjacent watersheds that discharge to the same receiving water body in amplifying the impact of compound flooding from riverine discharge with storm surge when the scale of the model includes an entire coastal line. In this study, we investigated the possibility of using the Advanced Circulation (ADCIRC) model as the primary model to simulate the compounding effects of fluvial flooding and storm surge via loose one-way coupling with gage data through internal time-dependent flux boundary conditions. The performance of the ADCIRC model was compared with the Hydrologic Engineering Center- River Analysis System (HEC-RAS) model both at the watershed and global scales. Furthermore, the importance of including riverine discharges and the interactions among adjacent watersheds were quantified. Results showed that the ADCIRC model could reliably be used to model compound flooding on both a watershed scale and a regional scale. Moreover, accounting for the interaction of river discharge from multiple watersheds is critical in accurately predicting flood patterns when high amounts of riverine flow occur in conjunction with storm surge. Particularly, with storms such as Hurricane Harvey (2017), where river flows were near record levels, inundation patterns and water surface elevations were highly dependent on the incorporation of the discharge input from multiple watersheds. Such an effect caused extra and longer inundations in some areas during Hurricane Harvey. Comparisons with real gauge data show that adding internal flow boundary conditions into ADCIRC to account for river discharge from multiple watersheds significantly improves accuracy in predictions of water surface elevations during coastal flooding events. 
    more » « less