Abstract High tide floods (HTFs) are minor, shallow flooding events whose frequency has increased due to relative sea‐level rise (SLR) and secular changes in tides. Here we isolate and examine the role of historical landscape change (geomorphology, land cover) and SLR on tides and HTF frequency in an urbanized lagoonal estuary: Jamaica Bay, New York. The approach involves data archeology, historical (1870s) map digitization, as well as numerical modeling of the bay. Numerical simulations indicate that a century of landscape alterations (e.g., inlet deepening and widening, channel deepening, and wetland reclamation) increased the mean tidal range at the head of the bay by about 20%. The observed historical shift from the attenuation to amplification of semidiurnal tides is primarily associated with reduced tidal damping at the inlet and increased tidal reflection. The 18% decrease in surface area exerts a minor influence. A 1‐year (2020) water level simulation is used to evaluate the effects of both SLR and altered morphology on the annual number of HTFs. Results show that of 15 “minor flood” events in 2020, only one would have occurred without SLR and two without landscape changes since the 1870s. Spectral and transfer function analyses of water level reveal frequency‐dependent fingerprints of landscape change, with a significant decrease in damping for high‐frequency surges and tides (6–18 hr time scale). By contrast, SLR produced only minor effects on frequency‐dependent amplification. Nonetheless, the geomorphic influence on the dynamical response significantly increases the vulnerability of the system to SLR, particularly high‐tide flooding.
more »
« less
Compound Minor Floods and the Role of Discharge in the Delaware River Estuary
Abstract Compound floods are often thought of as large, infrequent floods during which extremes of coastal sea level and/or river flow combine with each other or additional factors (e.g., tides and rainfall) to induce major flooding. However, little is known about the potentially compound nature of more frequent, lower‐level floods. Here, we introduce the term “compound minor floods” to define minor floods composed of two or more water‐level sources. We use the Delaware River Estuary as a case study to investigate the prevalence and composition of these minor compound floods along the extent of a tidal river. We apply multiple linear regression to a 22‐year time series of coastal water levels and river discharge to establish the contributions of tides, nontidal open‐ocean effects, and river discharge to minor flood events at eight locations along the tidal Delaware River. We find that most minor flood events are compound in nature, requiring at least two components (e.g., tides and river discharge) to initiate flooding. We identify spatial structure in the relative importance of oceanographic and riverine contributions to minor flooding along the tidal reach of the estuary. These results suggest that incorporating fluvial components into minor flooding assessments is important to fully characterize flood risk along tidal rivers and estuaries.
more »
« less
- Award ID(s):
- 2123692
- PAR ID:
- 10576013
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 130
- Issue:
- 3
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. We investigate here the effects of geometric properties (channel depth andcross-sectional convergence length), storm surge characteristics, friction,and river flow on the spatial and temporal variability of compound floodingalong an idealized, meso-tidal coastal-plain estuary. An analytical model isdeveloped that includes exponentially convergent geometry, tidal forcing,constant river flow, and a representation of storm surge as a combination oftwo sinusoidal waves. Nonlinear bed friction is treated using Chebyshevpolynomials and trigonometric functions, and a multi-segment approach isused to increase accuracy. Model results show that river discharge increasesthe damping of surge amplitudes in an estuary, while increasing channeldepth has the opposite effect. Sensitivity studies indicate that the impactof river flow on peak water level decreases as channel depth increases,while the influence of tide and surge increases in the landward portion ofan estuary. Moreover, model results show less surge damping in deeperconfigurations and even amplification in some cases, while increasedconvergence length scale increases damping of surge waves with periods of 12–72 h. For every modeled scenario, there is a point where river dischargeeffects on water level outweigh tide/surge effects. As a channel isdeepened, this cross-over point moves progressively upstream. Thus, channeldeepening may alter flood risk spatially along an estuary and reduce thelength of a river estuary, within which fluvial flooding is dominant.more » « less
-
Abstract The risk of compound coastal flooding in the San Francisco Bay Area is increasing due to climate change yet remains relatively underexplored. Using a novel hybrid statistical-dynamical downscaling approach, this study investigates the impacts of climate change induced sea-level rise and higher river discharge on the magnitude and frequency of flooding events as well as the relative importance of various forcing drivers to compound flooding within the Bay. Results reveal that rare occurrences of flooding under the present-day climate are projected to occur once every few hundred years under climate change with relatively low sea-level rise (0.5 m) but would become annual events under climate change with high sea-level rise (1.0 to 1.5 m). Results also show that extreme water levels that are presently dominated by tides will be dominated by sea-level rise in most locations of the Bay in the future. The dominance of river discharge to the non-tidal and non-sea-level rise driven water level signal in the North Bay is expected to extend ~15 km further seaward under extreme climate change. These findings are critical for informing climate adaptation and coastal resilience planning in San Francisco Bay.more » « less
-
Abstract. In coastal regions, compound flooding can arise from a combination of different drivers such as storm surges, high tides, excess river discharge, and rainfall. Compound flood potential is often assessed by quantifying the dependence and joint probabilities of the flood drivers using multivariate models. However, most of these studies assume that all extreme events originate from a single population. This assumption may not be valid for regions where flooding can arise from different generation processes, e.g., tropical cyclones (TCs) and extratropical cyclones (ETCs). Here we present a flexible copula-based statistical framework to assess compound flood potential from multiple flood drivers while explicitly accounting for different storm types. The proposed framework is applied to Gloucester City, New Jersey, and St. Petersburg, Florida as case studies. Our results highlight the importance of characterizing the contributions from TCs and non-TCs separately to avoid potential underestimation of the compound flood potential. In both study regions, TCs modulate the tails of the joint distributions (events with higher return periods) while non-TC events have a strong effect on events with low to moderate joint return periods. We show that relying solely on TCs may be inadequate when estimating compound flood risk in coastal catchments that are also exposed to other storm types. We also assess the impact of non-classified storms that are neither linked to TCs or ETCs in the region (such as locally generated convective rainfall events and remotely forced storm surges). The presented study utilizes historical data and analyzes two populations, but the framework is flexible and can be extended to account for additional storm types (e.g., storms with certain tracks or other characteristics) or can be used with model output data including hindcasts or future projections.more » « less
-
In coastal regions, compound flooding can arise from a combination of different drivers, such as storm surges, high tides, excess river discharge, and rainfall. Compound flood potential is often assessed by quantifying the dependence and joint probabilities of flood drivers using multivariate models. However, most of these studies assume that all extreme events originate from a single population. This assumption may not be valid for regions where flooding can arise from different generation processes, e.g., tropical cyclones (TCs) and extratropical cyclones (ETCs). Here we present a flexible copula-based statistical framework to assess compound flood potential from multiple flood drivers while explicitly accounting for different storm types. The proposed framework is applied to Gloucester City, New Jersey, and St. Petersburg, Florida, as case studies. Our results highlight the importance of characterizing the contributions from TCs and non-TCs separately to avoid potential underestimation of the compound flood potential. In both study regions, TCs modulate the tails of the joint distributions (events with higher return periods), while non-TC events have a strong effect on events with low to moderate joint return periods. We show that relying solely on TCs may be inadequate when estimating compound flood risk in coastal catchments that are also exposed to other storm types. We also assess the impact of non-classified storms that are not linked to either TCs or ETCs in the region (such as locally generated convective rainfall events and remotely forced storm surges). The presented study utilizes historical data and analyzes two populations, but the framework is flexible and can be extended to account for additional storm types (e.g., storms with certain tracks or other characteristics) or can be used with model output data including hindcasts or future projections.more » « less
An official website of the United States government
