skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Intelligently Designed AI for Structural Health Monitoring of a Reinforced Concrete Bridge
e. With recent advances in online sensing technology and high-performance computing, structural health monitoring (SHM) has begun to emerge as an automated approach to the real-time conditional monitoring of civil infrastructure. Ideal SHM strategies detect and characterize damage by leveraging measured response data to update physics-based finite element models (FEMs). When monitoring composite structures, such as reinforced concrete (RC) bridges, the reliability of FEM based SHM is adversely affected by material, boundary, geometric, and other model uncertainties. Civil engineering researchers have adapted popular artificial intelligence (AI) techniques to overcome these limitations, as AI has an innate ability to solve complex and ill-defined problems by leveraging advanced machine learning techniques to rapidly analyze experimental data. In this vein, this study employs a novel Bayesian estimation technique to update a coupled vehicle-bridge FEM for the purposes of SHM. Unlike existing AI based techniques, the proposed approach makes intelligent use of an embedded FEM model, thus reducing the parameter space while simultaneously guiding the Bayesian model via physics-based principles. To validate the method, bridge response data is generated from the vehicle-bridge FEM given a set of “true” parameters and the bias and standard deviation of the parameter estimates are analyzed. Additionally, the mean parameter estimates are used to solve the FEM model and the results are compared against the results obtained for “true” parameter values. A sensitivity study is also conducted to demonstrate methods for properly formulating model spaces to improve the Bayesian estimation routine. The study concludes with a discussion highlighting factors that need to be considered when leveraging experimental data to update FEMs of concrete structures using AI techniques.  more » « less
Award ID(s):
1633608
PAR ID:
10341160
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Concrete Industry in the Era of AI
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Structural health monitoring (SHM) activities are essential for achieving a realistic characterisation of bridge structural performance levels throughout the service life. These activities can help detect structural damage before the potential occurrence of component- or system-level structural failures. In addition to their application at discrete times, SHM systems can also be installed to provide long-term accurate and reliable data continuously throughout the entire service life of a bridge. Owing to their superior accuracy and long-term durability compared to traditional strain gages, fiber optic sensors are ideal in extracting accurate real-time strain and temperature data of bridge components. This paper presents a statistical damage detection and localisation approach to evaluate the performance of prestressed concrete bridge girders using fiber Bragg grating sensors. The presented approach employs Artificial Neural Networks to establish a relationship between the strain profiles recorded at different sensor locations across the investigated girder. The approach is capable of detecting and localising the presence of damage at the sensor location without requiring detailed loading information; accordingly, it can be suitable for long-term monitoring activities under normal traffic loads. Experimental laboratory data obtained from the structural testing of a large-scale prestressed concrete bridge girder is used to illustrate the approach. 
    more » « less
  2. The Internet of Things (IoT) has significantly advanced the application of Wireless Sensor Networks (WSNs) in Structural Health Monitoring (SHM), particularly for civil engineering infrastructure. While unmanned aerial vehicles (UAVs) are commonly employed for data collection, this paper proposes a novel approach using Bluetooth Low Energy (BLE) for synchronization and data gathering in SHM systems. Unlike traditional methods that may suffer from compromised network security and increased energy demands, the BLE-based system ensures that individual sensor nodes operate autonomously, providing inherent security benefits and improved battery longevity. Each sensor node acts independently, minimizing the risk to the overall network if a single node is compromised. We present a synchronization scheme that leverages BLE's low-power consumption to enhance the SHM of bridges, supported by a prototype developed using a PASCO bridge kit with wireless load cells and accelerometers. The proposed BLE protocol, to the best of the authors' knowledge, represents an unexplored avenue in SHM, promising increased safety and efficiency in sensor networks. 
    more » « less
  3. This paper presents a variational Bayesian inference Neural Network (BNN) approach to quantify uncertainties in matrix function estimation for the state-space linear parameter-varying (LPV) model identification problem using only inputs/outputs data. The proposed method simultaneously estimates states and posteriors of matrix functions given data. In particular, states are estimated by reaching a consensus between an estimator based on past system trajectory and an estimator by recurrent equations of states; posteriors are approximated by minimizing the Kullback–Leibler (KL) divergence between the parameterized posterior distribution and the true posterior of the LPV model parameters. Furthermore, techniques such as transfer learning are explored in this work to reduce computational cost and prevent convergence failure of Bayesian inference. The proposed data-driven method is validated using experimental data for identification of a control-oriented reactivity controlled compression ignition (RCCI) engine model. 
    more » « less
  4. Structural Health Monitoring (SHM) uses wireless sensor network (WSN) to monitor a civil construction’s conditions remotely and constantly for its sustainable usage. Security in WSN for SHM is essential to safeguard critical transportation infrastructure such as bridges. While WSN offers cost-effective solutions for Bridge SHM, its wireless nature expands attack surfaces, making security a significant concern. Despite progress in addressing security issues in WSN for Bridge SHM, challenges persist in device authentication due to the unique placement of sensor nodes and their resource constraints, particularly in energy conservation requirements to extend the system’s lifetime. To overcome these limitations, this paper proposes an innovative authentication scheme with deep learning at the physical layer. Our approach steers away from conventional device authentication methods: no challenge-response protocol with heavy communication overhead and no cryptography of intensive computation. Instead, we use radio frequency (RF) fingerprinting to authenticate sensor nodes. Deep learning is chosen for its ability to discover patterns in large datasets without manual feature engineering. We model our scheme on IEEE 802.11ah, Wi-Fi HaLow of long-range communication and low-power consumption for machine-to-machine (M2M) applications. Simulations and experiments using universal software radio peripheral (USRP) demonstrate the effectiveness of the proposed scheme. By integrating security into Cyber-Physical System/the Internet-of-Things (CPS/IoT) design of WSN for Bridge SHM, our work contributes to critical infrastructure protection. 
    more » « less
  5. Real-time fatigue health monitoring has the potential to serve as a valuable complement to structural health monitoring (SHM) for bridge inspections. SHM is an objective supplement to visual bridge inspections with a minimum interval between bridge inspections at 24 months. SHM can provide quantitative and objective data on a bridge’s fatigue condition for fracture-critical components, of which fatigue is a criterion. Current methods of continuous structural health monitoring for condition assessment are performed by collecting measured bridge response subjected to operational traffic from an array of sensors installed on fracture-critical members of a bridge. The measured responses are used to determine the remaining fatigue life of the bridge—the minimum time before repair. The large amount of data involved in this process complicates the design of a system that will automate the data collection process at a bridge, analyze that data, and display information about bridge health to researchers and engineers. Variations in bridge designs and condition assessment algorithms also necessitate that such a system be modular and adaptable to allow for expansion to additional structures. A new system has been developed that separates bridge SHM from the data storage and communication system. This architecture creates a reliable interface for sending data from one or more bridges to a cloud server where it can be processed using modular algorithms that can be adapted for different use cases. The cloud-based web service and data repository makes bridge structural health data available to researchers at all steps of the process. This system provides significant advantages over previous platforms for structural health monitoring and condition assessment, most notably in the areas of modularity, extensibility, and reliability. 
    more » « less