This paper presents an integrated structure of artificial neural networks, named state integrated matrix estimation (SIME), for linear parameter-varying (LPV) model identification. The proposed method simultaneously estimates states and explores structural dependency of matrix functions of a representative LPV model only using inputs/outputs data. The case with unknown (unmeasurable) states is circumvented by SIME using two estimators of the same state: one estimator represented by an ANN and the other obtained by LPV model equations. Minimizing the difference between these two estimators, as part of the cost function, is used to guarantee their consistency. The results from a complex nonlinear system, namely a reactivity controlled compression ignition (RCCI) engine, show high accuracy of the state-space LPV models obtained using the proposed SIME while requiring minimal hyperparameters tuning.
more »
« less
Epistemic Uncertainty Quantification in State-space LPV Model Identification Using Bayesian Neural Networks
This paper presents a variational Bayesian inference Neural Network (BNN) approach to quantify uncertainties in matrix function estimation for the state-space linear parameter-varying (LPV) model identification problem using only inputs/outputs data. The proposed method simultaneously estimates states and posteriors of matrix functions given data. In particular, states are estimated by reaching a consensus between an estimator based on past system trajectory and an estimator by recurrent equations of states; posteriors are approximated by minimizing the Kullback–Leibler (KL) divergence between the parameterized posterior distribution and the true posterior of the LPV model parameters. Furthermore, techniques such as transfer learning are explored in this work to reduce computational cost and prevent convergence failure of Bayesian inference. The proposed data-driven method is validated using experimental data for identification of a control-oriented reactivity controlled compression ignition (RCCI) engine model.
more »
« less
- Award ID(s):
- 1762520
- PAR ID:
- 10188473
- Date Published:
- Journal Name:
- IEEE control systems letters
- ISSN:
- 2475-1456
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents an integrated structure of arti cial neural networks, named state integrated matrix estimation (SIME), for linear parameter-varying (LPV) model identi cation. The proposed method simultaneously estimates states and explores structural dependency of matrix functions of a representative LPV model only using inputs/outputs data. The case with unknown (unmeasurable) states is circumvented by SIME using two estimators of the same state: one estimator represented by an ANN and the other obtained by LPV model equations. Minimizing the difference between these two estimators, as part of the cost function, is used to guarantee their consistency. The results from a complex nonlinear system, namely a reactivity controlled compression ignition (RCCI) engine, show high accuracy of the state-space LPV models obtained using the proposed SIME while requiring minimal hyperparameters tuning.more » « less
-
Abstract Due to their uncertainty quantification, Bayesian solutions to inverse problems are the framework of choice in applications that are risk averse. These benefits come at the cost of computations that are in general, intractable. New advances in machine learning and variational inference (VI) have lowered this computational barrier by leveraging data-driven learning. Two VI paradigms have emerged that represent different tradeoffs: amortized and non-amortized. Amortized VI can produce fast results but due to generalizing to many observed datasets it produces suboptimal inference results. Non-amortized VI is slower at inference but finds better posterior approximations since it is specialized towards a single observed dataset. Current amortized VI techniques run into a sub-optimality wall that cannot be improved without more expressive neural networks or extra training data. We present a solution that enables iterative improvement of amortized posteriors that uses the same networks architectures and training data. The benefits of our method requires extra computations but these remain frugal since they are based on physics-hybrid methods and summary statistics. Importantly, these computations remain mostly offline thus our method maintains cheap and reusable online evaluation while bridging the optimality gap between these two paradigms. We denote our proposed methodASPIRE-Amortized posteriors withSummaries that arePhysics-based andIterativelyREfined. We first validate our method on a stylized problem with a known posterior then demonstrate its practical use on a high-dimensional and nonlinear transcranial medical imaging problem with ultrasound. Compared with the baseline and previous methods in the literature, ASPIRE stands out as an computationally efficient and high-fidelity method for posterior inference.more » « less
-
Abstract A Bayesian method is proposed for variable selection in high-dimensional matrix autoregressive models which reflects and exploits the original matrix structure of data to (a) reduce dimensionality and (b) foster interpretability of multidimensional relationship structures. A compact form of the model is derived which facilitates the estimation procedure and two computational methods for the estimation are proposed: a Markov chain Monte Carlo algorithm and a scalable Bayesian EM algorithm. Being based on the spike-and-slab framework for fast posterior mode identification, the latter enables Bayesian data analysis of matrix-valued time series at large scales. The theoretical properties, comparative performance, and computational efficiency of the proposed model is investigated through simulated examples and an application to a panel of country economic indicators.more » « less
-
Approximate confidence distribution computing (ACDC) offers a new take on the rapidly developing field of likelihood-free inference from within a frequentist framework. The appeal of this computational method for statistical inference hinges upon the concept of a confidence distribution, a special type of estimator which is defined with respect to the repeated sampling principle. An ACDC method provides frequentist validation for computational inference in problems with unknown or intractable likelihoods. The main theoretical contribution of this work is the identification of a matching condition necessary for frequentist validity of inference from this method. In addition to providing an example of how a modern understanding of confidence distribution theory can be used to connect Bayesian and frequentist inferential paradigms, we present a case to expand the current scope of so-called approximate Bayesian inference to include non-Bayesian inference by targeting a confidence distribution rather than a posterior. The main practical contribution of this work is the development of a data-driven approach to drive ACDC in both Bayesian or frequentist contexts. The ACDC algorithm is data-driven by the selection of a data-dependent proposal function, the structure of which is quite general and adaptable to many settings. We explore three numerical examples that both verify the theoretical arguments in the development of ACDC and suggest instances in which ACDC outperform approximate Bayesian computing methods computationally.more » « less
An official website of the United States government

