skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Caribbean Resilience of Infrastructure in the United States Virgin Islands
f. Analyzing the US Virgin Islands’ resilience in relation to their infrastructure in the case of natural disasters - The U.S. Virgin Islands are comprised of four islands in the Caribbean: St. Croix, St. Thomas, St. John, and Water Island. With the high frequency of hurricanes in the Caribbean region, these islands commonly experience infrastructure disruptions. Worse, disasters such as Irma and Maria in 2017 make total losses far from unexpected. The islands have also seen a history of economic and political turmoil, rendering their infrastructure insufficient for resisting such devastating events and the lower class more susceptible to disruptions. These factors combined posits the need for resilient infrastructure to be established on the islands. Resilient infrastructure involves bolstering the utilities that are required for modern life, such as clean water, power, and transportation, such that they maintain the highest output possible when disrupted by a disaster and can be easily and effectively restored to their status quo. Our work this semester focused on assessing the infrastructure on the islands to energy options could be better implemented. This has involved gathering as much quantitative and qualitative data on the USVI as possible. This was done in order to perform a rigorous analysis on which sections of the network are most necessary for the interconnected systems network together to function; these sections are known as critical points. Only so much data is available overseas, however, so to complete our assessment we will identify what we need to fill in the gaps in our data by working in collaboration with the University of the Virgin Islands. We are constructing an accurate disaster model of the USVI infrastructure and determine its critical points as well as make recommendations for additional hazard and mitigation plans. We will then focus on getting these recommendations to the right positions of power, which could lead to establishing resilient infrastructure on the island and pave the way to a more sustainable future. In the future, we hope to create a cooperative learning bond with the University of the Virgin Islands so that future applications of the project can proceed.  more » « less
Award ID(s):
1633608
PAR ID:
10341171
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
CEDC Summit 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Coral communities in the Caribbean face a new and deadly threat in the form of the highly virulent multi-host stony coral tissue loss disease (SCTLD). In late January of 2019, a disease with signs and characteristics matching that of SCTLD was found affecting a reef off the coast of St. Thomas in the U.S. Virgin Islands (USVI). Identification of its emergence in the USVI provided the opportunity to document the initial evolution of its spatial distribution, coral species susceptibility characteristics, and its comparative impact on coral cover at affected and unaffected coral reef locations. Re-assessments at sentinel sites and long-term monitoring locations were used to track the spread of the disease, assess species affected, and quantify its impact. The disease was initially limited to the southwest of St. Thomas for several months, then spread around the island and to the neighboring island of St. John to the east. Differences in disease prevalence among species were similar to reports of SCTLD from other regions. Highly affected species included Colpophyllia natans, Eusmilia fastigiata, Montastraea cavernosa, Orbicella spp., and Pseudodiploria strigosa. Dendrogyra cylindrus and Meandrina meandrites were also highly affected but showed more variability in disease prevalence, likely due to initial low abundances and the rapid loss of colonies due to disease. Siderastrea spp. were less affected and showed lower prevalence. Species previously reported as unaffected or data deficient that were found to be affected by SCTLD included Agaricia spp., Madracis spp., and Mycetophyllia spp. We also observed multi-focal lesions at SCTLD-affected sites on colonies of Porites astreoides, despite that poritids have previously been considered low or not susceptible to SCTLD. Loss of coral cover due to acute tissue loss diseases, which were predominantly SCTLD, was significant at several monitoring locations and was more impactful than previous mass bleaching events at some sites. There are no signs that the USVI SCTLD outbreak is abating, therefore it is likely that this disease will become widespread across the U.S. Caribbean and British Virgin Islands in the near future. 
    more » « less
  2. null (Ed.)
    In 2009, the University of Alabama-Huntsville configured their GOES satellited-based solar radiation product to include Puerto Rico, the US Virgin Islands (USVI), Dominican Republic, Haiti, Jamaica, and Cuba. The half-hourly and daily integrated data are available at 1 km resolution for Puerto Rico and the USVI and 2 km for Hispaniola, Jamaica, and Cuba. These data made it possible to implement estimates of satellite radiation-based evapotranspiration methods on all of the islands. The use of the solar radiation data in combination with estimates of other climate parameters facilitated the development of a water and energy balance algorithm for Puerto Rico. The purpose of this paper is to describe the theoretical background and technical approach for estimating the components of the daily water and energy balance. The operational water and energy balance model is the first of its kind in Puerto Rico. Model validation results are presented for reference and actual evapotranspiration, soil moisture, and streamflow. Mean errors for all analyses were less than 7%. The water and energy balance model results can benefit such diverse fields as agriculture, ecology, coastal water management, human health, renewable energy development, water resources, drought monitoring, and disaster and emergency management. This research represents a preliminary step in developing a suite of gridded hydro-climate products for the Caribbean Region. 
    more » « less
  3. null (Ed.)
    Stony coral tissue loss disease (SCTLD) was initially documented in Florida in 2014 and outbreaks with similar characteristics have since appeared in disparate areas throughout the northern Caribbean, causing significant declines in coral communities. SCTLD is characterized by focal or multifocal lesions of denuded skeleton caused by rapid tissue loss and affects at least 22 reef-building species of Caribbean corals. A tissue-loss disease consistent with the case definition of SCTLD was first observed in the U.S. Virgin Islands (USVI) in January of 2019 off the south shore of St. Thomas at Flat Cay. The objective of the present study was to characterize species susceptibility to the disease present in St. Thomas in a controlled laboratory transmission experiment. Fragments of six species of corals ( Colpophyllia natans , Montastraea cavernosa , Orbicella annularis , Porites astreoides , Pseudodiploria strigosa , and Siderastrea siderea ) were simultaneously incubated with (but did not physically contact) SCTLD-affected colonies of Diploria labyrinthiformis and monitored for lesion appearance over an 8 day experimental period. Paired fragments from each corresponding coral genotype were equivalently exposed to apparently healthy colonies of D. labyrinthiformis to serve as controls; none of these fragments developed lesions throughout the experiment. When tissue-loss lesions appeared and progressed in a disease treatment, the affected coral fragment, and its corresponding control genet, were removed and preserved for future analysis. Based on measures including disease prevalence and incidence, relative risk of lesion development, and lesion progression rates, O. annularis, C. natans , and S. siderea showed the greatest susceptibility to SCTLD in the USVI. These species exhibited earlier average development of lesions, higher relative risk of lesion development, greater lesion prevalence, and faster lesion progression rates compared with the other species, some of which are considered to be more susceptible based on field observations (e.g., P. strigosa ). The average transmission rate in the present study was comparable to tank studies in Florida, even though disease donor species differed. Our findings suggest that the tissue loss disease affecting reefs of the USVI has a similar epizootiology to that observed in other regions, particularly Florida. 
    more » « less
  4. Abstract Patterns of population biology and community structure can be studied by looking closely at the ontogeny and reproductive biology of reef‐building organisms. This knowledge is particularly important for Caribbean octocorals, which seem to be more resilient to long‐term environmental change than scleractinian corals and provide some of the same ecological services. We monitored the development of the black sea rod,Plexaura homomalla, a common, widely distributed octocoral on shallow Caribbean reefs, from eggs to three‐polyp colonies over the course of 10 weeks. Gametes were collectedex situon St. John, U.S. Virgin Islands, during spawning events that occurred 3–6 days after the July full moon. Cleavage started 3.0 hr after fertilization and was holoblastic, equal, and radial. Embryos were positively buoyant until becoming planulae at 3 days after fertilization. Planulae were competent to settle 4 days after fertilization. Symbiodiniaceae began infecting polyps ~8 days after fertilization. Overall, development was typical for Caribbean octocorals, except for an increase in the number of embryos between 3.5 and 6.0 hr after fertilization. 
    more » « less
  5. Abstract Damages in critical infrastructure occur abruptly, and disruptions evolve with time dynamically. Understanding the situation of critical infrastructure disruptions is essential to effective disaster response and recovery of communities. Although the potential of social media data for situation awareness during disasters has been investigated in recent studies, the application of social sensing in detecting disruptions and analyzing evolutions of the situation about critical infrastructure is limited. To address this limitation, this study developed a graph‐based method for detecting credible situation information related to infrastructure disruptions in disasters. The proposed method was composed of data filtering, burst time‐frame detection, content similarity calculation, graph analysis, and situation evolution analysis. The application of the proposed method was demonstrated in a case study of Hurricane Harvey in 2017 in Houston. The findings highlighted the capability of the proposed method in detecting credible situational information and capturing the temporal and spatial patterns of critical infrastructure events that occurred in Harvey, including disruptive events and their adverse impacts on communities. The proposed methodology can improve the ability of community members, volunteer responders, and decision makers to detect and respond to infrastructure disruptions in disasters. 
    more » « less