- Award ID(s):
- 1633608
- PAR ID:
- 10341200
- Date Published:
- Journal Name:
- ESAIM: Mathematical Modelling and Numerical Analysis
- Volume:
- 55
- Issue:
- 6
- ISSN:
- 0764-583X
- Page Range / eLocation ID:
- 2827 to 2847
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Many inverse problems involve two or more sets of variables that represent different physical quantities but are tightly coupled with each other. For example, image super-resolution requires joint estimation of the image and motion parameters from noisy measurements. Exploiting this structure is key for efficiently solving these large-scale optimization problems, which are often ill-conditioned. In this paper, we present a new method called Linearize And Project (LAP) that offers a flexible framework for solving inverse problems with coupled variables. LAP is most promising for cases when the subproblem corresponding to one of the variables is considerably easier to solve than the other. LAP is based on a Gauss–Newton method, and thus after linearizing the residual, it eliminates one block of variables through projection. Due to the linearization, this block can be chosen freely. Further, LAP supports direct, iterative, and hybrid regularization as well as constraints. Therefore LAP is attractive, e.g., for ill-posed imaging problems. These traits differentiate LAP from common alternatives for this type of problem such as variable projection (VarPro) and block coordinate descent (BCD). Our numerical experiments compare the performance of LAP to BCD and VarPro using three coupled problems whose forward operators are linear with respect to one block and nonlinear for the other set of variables.more » « less
-
We propose a new learning-based approach to solve ill-posed inverse problems in imaging. We address the case where ground truth training samples are rare and the problem is severely ill-posed-both because of the underlying physics and because we can only get few measurements. This setting is common in geophysical imaging and remote sensing. We show that in this case the common approach to directly learn the mapping from the measured data to the reconstruction becomes unstable. Instead, we propose to first learn an ensemble of simpler mappings from the data to projections of the unknown image into random piecewise-constant subspaces. We then combine the projections to form a final reconstruction by solving a deconvolution-like problem. We show experimentally that the proposed method is more robust to measurement noise and corruptions not seen during training than a directly learned inverse.more » « less
-
null (Ed.)Abstract Randomized methods can be competitive for the solution of problems with a large matrix of low rank. They also have been applied successfully to the solution of large-scale linear discrete ill-posed problems by Tikhonov regularization (Xiang and Zou in Inverse Probl 29:085008, 2013). This entails the computation of an approximation of a partial singular value decomposition of a large matrix A that is of numerical low rank. The present paper compares a randomized method to a Krylov subspace method based on Golub–Kahan bidiagonalization with respect to accuracy and computing time and discusses characteristics of linear discrete ill-posed problems that make them well suited for solution by a randomized method.more » « less
-
Coded aperture X-ray CT (CAXCT) is a new low-dose imaging technology that promises far-reaching benefits in industrial and clinical applications. It places various coded apertures (CA) at a time in front of the X-ray source to partially block the radiation. The ill-posed inverse reconstruction problem is then solved using l1-norm-based iterative reconstruction methods. Unfortunately, to attain high-quality reconstructions, the CA patterns must change in concert with the view-angles making the implementation impractical. This paper proposes a simple yet radically different approach to CAXCT, which is coined StaticCodeCT, that uses a single-static CA in the CT gantry, thus making the imaging system amenable for practical implementations. Rather than using conventional compressed sensing algorithms for recovery, we introduce a new reconstruction framework for StaticCodeCT. Namely, we synthesize the missing measurements using low-rank tensor completion principles that exploit the multi-dimensional data correlation and low-rank nature of a 3-way tensor formed by stacking the 2D coded CT projections. Then, we use the FDK algorithm to recover the 3D object. Computational experiments using experimental projection measurements exhibit up to 10% gains in the normalized root mean square distance of the reconstruction using the proposed method compared with those attained by alternative low-dose systems.
-
Kim, Jaehwan (Ed.)Electrical impedance tomography (EIT) is a rising and emerging imaging technique with great potential in many areas, especially in functional brain imaging applications. An EIT system with high speed and accuracy can have many applications to medical devices supporting in diagnosis and treatment of neurological disorders and diseases. In this research, EIT algorithms and hardware are developed and improved to increase reconstructed images' accuracy and decrease the reconstruction time. Due to multiplexer design limitations, EIT measurements are subject to strong capacitive effects from charging and discharging in switching cycles around 300 to 400 samples per 1280 samples (in 10 milliseconds sampling). We developed an algorithm to choose data in steady-state condition only selectively. This method improves the signal-to-noise ratio and results in better reconstruction images. An algorithm to effectively synchronize the beginning points of data was developed to increase the system's speed. This presentation also presents the EIT system's hardware architecture based on Texas Instruments Fixed-Point Digital Signal Processor - TMS320VC5509A, which is low-cost, high potential in popularity the community in the future. For high operation speed, we propose the EIT system used Sitara™ AM57x processors of Texas Instruments.more » « less