Mobile robot navigation is a critical aspect of robotics, with applications spanning from service robots to industrial automation. However, navigating in complex and dynamic environments poses many challenges, such as avoiding obstacles, making decisions in real-time, and adapting to new situations. Reinforcement Learning (RL) has emerged as a promising approach to enable robots to learn navigation policies from their interactions with the environment. However, application of RL methods to real-world tasks such as mobile robot navigation, and evaluating their performance under various training–testing settings has not been sufficiently researched. In this paper, we have designed an evaluation framework that investigates the RL algorithm’s generalization capability in regard to unseen scenarios in terms of learning convergence and success rates by transferring learned policies in simulation to physical environments. To achieve this, we designed a simulated environment in Gazebo for training the robot over a high number of episodes. The training environment closely mimics the typical indoor scenarios that a mobile robot can encounter, replicating real-world challenges. For evaluation, we designed physical environments with and without unforeseen indoor scenarios. This evaluation framework outputs statistical metrics, which we then use to conduct an extensive study on a deep RL method, namely the proximal policy optimization (PPO). The results provide valuable insights into the strengths and limitations of the method for mobile robot navigation. Our experiments demonstrate that the trained model from simulations can be deployed to the previously unseen physical world with a success rate of over 88%. The insights gained from our study can assist practitioners and researchers in selecting suitable RL approaches and training–testing settings for their specific robotic navigation tasks. 
                        more » 
                        « less   
                    
                            
                            SocNavBench: A Grounded Simulation Testing Framework for Evaluating Social Navigation
                        
                    
    
            The human-robot interaction community has developed many methods for robots to navigate safely and socially alongside humans. However, experimental procedures to evaluate these works are usually constructed on a per-method basis. Such disparate evaluations make it difficult to compare the performance of such methods across the literature. To bridge this gap, we introduce SocNavBench , a simulation framework for evaluating social navigation algorithms. SocNavBench comprises a simulator with photo-realistic capabilities and curated social navigation scenarios grounded in real-world pedestrian data. We also provide an implementation of a suite of metrics to quantify the performance of navigation algorithms on these scenarios. Altogether, SocNavBench provides a test framework for evaluating disparate social navigation methods in a consistent and interpretable manner. To illustrate its use, we demonstrate testing three existing social navigation methods and a baseline method on SocNavBench , showing how the suite of metrics helps infer their performance trade-offs. Our code is open-source, allowing the addition of new scenarios and metrics by the community to help evolve SocNavBench to reflect advancements in our understanding of social navigation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1734361
- PAR ID:
- 10341305
- Date Published:
- Journal Name:
- ACM Transactions on Human-Robot Interaction
- Volume:
- 11
- Issue:
- 3
- ISSN:
- 2573-9522
- Page Range / eLocation ID:
- 1 to 24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A major challenge to deploying robots widely is navigation in human-populated environments, commonly referred to associal robot navigation. While the field of social navigation has advanced tremendously in recent years, the fair evaluation of algorithms that tackle social navigation remains hard because it involves not just robotic agents moving in static environments but also dynamic human agents and their perceptions of the appropriateness of robot behavior. In contrast, clear, repeatable, and accessible benchmarks have accelerated progress in fields like computer vision, natural language processing and traditional robot navigation by enabling researchers to fairly compare algorithms, revealing limitations of existing solutions and illuminating promising new directions. We believe the same approach can benefit social navigation. In this article, we pave the road toward common, widely accessible, and repeatable benchmarking criteria to evaluate social robot navigation. Our contributions include (a) a definition of a socially navigating robot as one that respects the principles of safety, comfort, legibility, politeness, social competency, agent understanding, proactivity, and responsiveness to context, (b) guidelines for the use of metrics, development of scenarios, benchmarks, datasets, and simulators to evaluate social navigation, and (c) a design of a social navigation metrics framework to make it easier to compare results from different simulators, robots, and datasets.more » « less
- 
            Abstract Statistical relational learning (SRL) and graph neural networks (GNNs) are two powerful approaches for learning and inference over graphs. Typically, they are evaluated in terms of simple metrics such as accuracy over individual node labels. Complexaggregate graph queries(AGQ) involving multiple nodes, edges, and labels are common in the graph mining community and are used to estimate important network properties such as social cohesion and influence. While graph mining algorithms support AGQs, they typically do not take into account uncertainty, or when they do, make simplifying assumptions and do not build full probabilistic models. In this paper, we examine the performance of SRL and GNNs on AGQs over graphs with partially observed node labels. We show that, not surprisingly, inferring the unobserved node labels as a first step and then evaluating the queries on the fully observed graph can lead to sub-optimal estimates, and that a better approach is to compute these queries as an expectation under the joint distribution. We propose a sampling framework to tractably compute the expected values of AGQs. Motivated by the analysis of subgroup cohesion in social networks, we propose a suite of AGQs that estimate the community structure in graphs. In our empirical evaluation, we show that by estimating these queries as an expectation, SRL-based approaches yield up to a 50-fold reduction in average error when compared to existing GNN-based approaches.more » « less
- 
            null (Ed.)As Human-Robot Interaction becomes more sophisticated, measuring the performance of a social robot is crucial to gauging the effectiveness of its behavior. However, social behavior does not necessarily have strict performance metrics that other autonomous behavior can have. Indeed, when considering robot navigation, a socially-appropriate action may be one that is sub-optimal, resulting in longer paths, longer times to get to a goal. Instead, we can rely on subjective assessments of the robot's social performance by a participant in a robot interaction or by a bystander. In this paper, we use the newly-validated Perceived Social Intelligence (PSI) scale to examine the perception of non-humanoid robots in non-verbal social scenarios. We show that there are significant differences between the perceived social intelligence of robots exhibiting SAN behavior compared to one using a traditional navigation planner in scenarios such as waiting in a queue and group behavior.more » « less
- 
            The increasing deployment of robots alongside humans necessitates sophisticated communication and motion planning to ensure safety and task achievability in social navigation scenarios. Existing methods often rely heavily on historical data and extensive expert hand-coding, which limits their scalability and generalizability. This paper introduces a novel framework that models social navigation as a Markov Decision Process (MDP), utilizing Conditional Abstraction Trees (CATs) to learn dynamic abstract world representations and policies that focus on critical aspects of interaction. In the offline phase, the framework operates within a simulator, while in the online phase, it deploys the learned representations and policies in real-world scenarios for ongoing refinement and adaptation. Integral to our approach is a Dynamic Bayesian Network (DBN) based human sensor and belief model that accounts for humans’ imperfect perception to enhance the prediction of human motion. We evaluated our method through extensive simulations and user studies involving physical experiments, demonstrating its effectiveness in managing critical interactions and ensuring safety and task completion across various scenarios.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    