skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impacts of Coastal Infrastructure on Shoreline Response to Major Hurricanes in Southwest Louisiana
The Rockefeller Wildlife Refuge, located along the Chenier Plain in Southwest Louisiana, was the location of the sequential landfall of two major hurricanes in the 2020 hurricane season. To protect the rapidly retreating coastline along the Refuge, a system of breakwaters was constructed, which was partially completed by the 2020 hurricane season. Multi-institutional, multi-disciplinary rapid response deployments of wave gauges, piezometers, geotechnical measurements, vegetation sampling, and drone surveys were conducted before and after Hurricanes Laura and Delta along two transects in the Refuge; one protected by a breakwater system and one which was the natural, unprotected shoreline. Geomorphological changes were similar on both transects after Hurricane Laura, while after Delta there was higher inland sediment deposition on the natural shoreline. Floodwaters drained from the transect with breakwater protection more slowly than the natural shoreline, though topography profiles are similar, indicating a potential dampening or complex hydrodynamic interactions between the sediment—wetland—breakwater system. In addition, observations of a fluidized mud deposit in Rollover Bayou in the Refuge are presented and discussed in context of the maintenance of wetland elevation and stability in the sediment starved Chenier Plain.  more » « less
Award ID(s):
1848650 1939275 2139882
PAR ID:
10341365
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Built Environment
Volume:
8
ISSN:
2297-3362
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hurricanes are one of the most devastating earth surface processes. In 2020 and 2021, Hurricanes Zeta and Ida pounded the Mississippi River Delta in two consecutive years, devastated South Louisiana, and raised tremendous concerns for scientists and stakeholders around the world. This study presents a high-resolution spatial-temporal analysis incorporating planialtimetric data acquired via LIDAR, drone, and satellite to investigate the shoreline dynamics near Port Fourchon, Louisiana, the eye of Ida at landfall, before and after the beach nourishment project and recent hurricane landfalls. The remote sensing analysis shows that the volume of the ~2 km studied beachfront was reduced by 240,858 m3 after consecutive landfalls of Hurricanes Zeta and Ida in 2020 and 2021, while 82,915 m3 of overwash fans were transported to the backbarrier areas. Overall, the studied beach front lost almost 40% of its volume in 2019, while the average dune crest height was reduced by over 1 m and the shoreline retreated ~60 m after the two hurricane strikes. Our spatial-temporal dataset suggests that the Louisiana Coastal Protection and Restoration Authority’s (CPRA’s) beach nourishment effort successfully stabilized the beach barrier at Port Fourchon during the hurricane-quiescent years but was not adequate to protect the shoreline at the Mississippi River Delta from intense hurricane landfalls. Our study supports the conclusion that, in the absence of further human intervention, Bay Champagne will likely disappear completely into the Gulf of Mexico within the next 40 years. 
    more » « less
  2. Online social networks allow different agencies and the public to interact and share the underlying risks and protective actions during major disasters. This study revealed such crisis communication patterns during Hurricane Laura compounded by the COVID-19 pandemic. Hurricane Laura was one of the strongest (Category 4) hurricanes on record to make landfall in Cameron, Louisiana, U.S. Using an application programming interface (API), this study utilizes large-scale social media data obtained from Twitter through the recently released academic track that provides complete and unbiased observations. The data captured publicly available tweets shared by active Twitter users from the vulnerable areas threatened by Hurricane Laura. Online social networks were based on Twitter’s user influence feature (i.e., mentions or tags) that allows notification of other users while posting a tweet. Using network science theories and advanced community detection algorithms, the study split these networks into 21 components of various size, the largest of which contained eight well-defined communities. Several natural language processing techniques (i.e., word clouds, bigrams, topic modeling) were applied to the tweets shared by the users in these communities to observe their risk-taking or risk-averse behavior during a major compounding crisis. Social media accounts of local news media, radio, universities, and popular sports pages were among those which heavily involved and closely interacted with local residents. In contrast, emergency management and planning units in the area engaged less with the public. The findings of this study provide novel insights into the design of efficient social media communication guidelines to respond better in future disasters. 
    more » « less
  3. Abstract The 2023 Atlantic hurricane season was above normal, producing 20 named storms, 7 hurricanes, 3 major hurricanes, and seasonal accumulated cyclone energy that exceeded the 1991–2020 average. Hurricane Idalia was the most damaging hurricane of the year, making landfall as a Category 3 hurricane in Florida, resulting in eight direct fatalities and 3.6 billion U.S. dollars in damage. The above-normal 2023 hurricane season occurred during a strong El Niño event. El Niño events tend to be associated with increased vertical wind shear across the Caribbean and tropical Atlantic, yet vertical wind shear during the peak hurricane season months of August–October was well below normal. The primary driver of the above-normal season was likely record warm tropical Atlantic sea surface temperatures (SSTs), which effectively counteracted some of the canonical impacts of El Niño. The extremely warm tropical Atlantic and Caribbean were associated with weaker-than-normal trade winds driven by an anomalously weak subtropical ridge, resulting in a positive wind–evaporation–SST feedback. We tested atmospheric circulation sensitivity to SSTs in both the tropical and subtropical Pacific and the Atlantic using the atmospheric component of the Community Earth System Model, version 2.3. We found that the extremely warm Atlantic was the primary driver of the reduced vertical wind shear relative to other moderate/strong El Niño events. The concentrated warmth in the eastern tropical Pacific in August–October may have contributed to increased levels of vertical wind shear than if the warming had been more evenly spread across the eastern and central tropical Pacific. 
    more » « less
  4. Abstract This study investigates how different risk predictors influenced households’ evacuation decisions during a dual‐threat event (Hurricane Laura and COVID‐19 pandemic). The Protective Action Decision Model (PADM) literature indicates that perceived threat variables are the most influential variables that drive evacuation decisions. This study applies the PADM to investigate a dual‐threat disaster that has conflicting protective action recommendations. Given the novelty, scale, span, impact, and messaging around COVID‐19, it is crucial to see how hurricanes along the Gulf Coast—a hazard addressed seasonally by residents with mostly consistent protective action messaging—produce different reactions in residents in this pandemic context. Household survey data were collected during early 2021 using a disproportionate stratified sampling procedure to include households located in mandatory and voluntary evacuation areas across the coastal counties in Texas and parishes in Louisiana that were affected by Hurricane Laura. Structural equation modeling was used to identify the relationships between perceived threats and evacuation decisions. The findings suggest affective risk perceptions strongly affected cognitive risk perceptions (CRPs). Notably, hurricane and COVID‐19 CRPs are significant predictors of hurricane evacuation decisions in different ways. Hurricane CRPs encourage evacuation, but COVID‐19 CRPs hinder evacuation decisions. 
    more » « less
  5. The Louisiana shoreline is rapidly retreating as a result of factors such as sea-level rise and land subsidence. The northern Gulf of Mexico coast is also a hotspot for hurricane landfalls, and several major storms have impacted this region in the past few decades. A section of the Louisiana (USA) coast that has one of the highest rates of shoreline retreat in North America is the Caminada-Moreau headland, located south of New Orleans. Bay Champagne is a coastal lake within the headland that provides a unique opportunity to investigate shoreline retreat and the coastal effects of hurricanes. In order to examine the influence of hurricanes on the rate of shoreline retreat, 35 years (1983–2018) of Landsat imagery was analyzed. During that period of time, the shoreline has retreated 292 m. The overall rate of shoreline retreat, prior to a beach re-nourishment project completed in 2014, was over 12 m per year. A period of high hurricane frequency (1998–2013) corresponds to an increased average shoreline retreat rate of >21 m per year. Coastal features created by multiple hurricanes that have impacted this site have persisted for several years. Bay Champagne has lost 48% of its surface area over the last 35 years as a result of long-term shoreline retreat. If shoreline retreat continues at the average rate, it is expected that Bay Champagne will disappear completely within the next 40 years. 
    more » « less