skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Compressible Navier–Stokes equations with heterogeneous pressure laws
Abstract This paper concerns the existence of global weak solutions à la Leray for compressible Navier–Stokes equations with a pressure law which depends on the density and on time and space variables t and x . The assumptions on the pressure contain only locally Lipschitz assumption with respect to the density variable and some hypothesis with respect to the extra time and space variables. It may be seen as a first step to consider heat-conducting Navier–Stokes equations with physical laws such as the truncated virial assumption. The paper focuses on the construction of approximate solutions through a new regularized and fixed point procedure and on the weak stability process taking advantage of the new method introduced by the two first authors with a careful study of an appropriate regularized quantity linked to the pressure.  more » « less
Award ID(s):
2049020
PAR ID:
10341400
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Nonlinearity
Volume:
34
Issue:
6
ISSN:
0951-7715
Page Range / eLocation ID:
4115 to 4162
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper concerns the existence of global weak solutionsá la Lerayfor compressible Navier–Stokes–Fourier systems with periodic boundary conditions and the truncated virial pressure law which is assumed to be thermodynamically unstable. More precisely, the main novelty is that the pressure law is not assumed to be monotone with respect to the density. This provides the first global weak solutions result for the compressible Navier-Stokes-Fourier system with such kind of pressure law which is strongly used as a generalization of the perfect gas law. The paper is based on a new construction of approximate solutions through an iterative scheme and fixed point procedure which could be very helpful to design efficient numerical schemes. Note that our method involves the recent paper by the authors published in Nonlinearity (2021) for the compactness of the density when the temperature is given. 
    more » « less
  2. In this paper, we present efficient numerical schemes based on the Lagrange multiplier approach for the Navier-Stokes equations. By introducing a dynamic equation (involving the kinetic energy, the Lagrange multiplier, and a regularization parameter), we form a new system which incorporates the energy evolution process but is still equivalent to the original equations. Such nonlinear system is then discretized in time based on the backward differentiation formulas, resulting in a dynamically regularized Lagrange multiplier (DRLM) method. First- and second-order DRLM schemes are derived and shown to be unconditionally energy stable with respect to the original variables. The proposed schemes require only the solutions of two linear Stokes systems and a scalar quadratic equation at each time step. Moreover, with the introduction of the regularization parameter, the Lagrange multiplier can be uniquely determined from the quadratic equation, even with large time step sizes, without affecting accuracy and stability of the numerical solutions. Fully discrete energy stability is also proved with the Marker-and-Cell (MAC) discretization in space. Various numerical experiments in two and three dimensions verify the convergence and energy dissipation as well as demonstrate the accuracy and robustness of the proposed DRLM schemes. 
    more » « less
  3. ABSTRACT This paper is concerned with efficient and accurate numerical schemes for the Cahn‐Hilliard‐Navier‐Stokes phase field model of binary immiscible fluids. By introducing two Lagrange multipliers for each of the Cahn‐Hilliard and Navier‐Stokes parts, we reformulate the original model problem into an equivalent system that incorporates the energy evolution process. Such a nonlinear, coupled system is then discretized in time using first‐ and second‐order backward differentiation formulas, in which all nonlinear terms are treated explicitly and no extra stabilization term is imposed. The proposed dynamically regularized Lagrange multiplier (DRLM) schemes are mass‐conserving and unconditionally energy‐stable with respect to the original variables. In addition, the schemes are fully decoupled: Each time step involves solving two biharmonic‐type equations and two generalized linear Stokes systems, together with two nonlinear algebraic equations for the Lagrange multipliers. A key feature of the DRLM schemes is the introduction of the regularization parameters which ensure the unique determination of the Lagrange multipliers and mitigate the time step size constraint without affecting the accuracy of the numerical solution, especially when the interfacial width is small. Various numerical experiments are presented to illustrate the accuracy and robustness of the proposed DRLM schemes in terms of convergence, mass conservation, and energy stability. 
    more » « less
  4. Many viscous liquids behave effectively as incompressible under high pressures but display a pronounced dependence of viscosity on pressure. The classical incompressible Navier-Stokes model cannot account for both features, and a simple pressure-dependent modification introduces questions about the well-posedness of the resulting equations. This paper presents the first study of a second-gradient extension of the incompressible Navier-Stokes model, recently introduced by the authors, which includes higher-order spatial derivatives, pressure-sensitive viscosities, and complementary boundary conditions. Focusing on steady flow down an inclined plane, we adopt Barus' exponential law and impose weak adherence at the lower boundary and a prescribed ambient pressure at the free surface. Through numerical simulations, we examine how the flow profile varies with the angle of inclination, ambient pressure, viscosity sensitivity to pressure, and internal length scale. 
    more » « less
  5. Abstract Hyperbolic Navier–Stokes equations replace the heat operator within the Navier–Stokes equations with a damped wave operator. Due to this second-order temporal derivative term, there exist no known bounded quantities for its solution; consequently, various standard results for the Navier–Stokes equations such as the global existence of a weak solution, that is typically constructed via Galerkin approximation, are absent in the literature. In this manuscript, we employ the technique of convex integration on the two-dimensional hyperbolic Navier–Stokes equations to construct a weak solution with prescribed energy and thereby prove its non-uniqueness. The main difficulty is the second-order temporal derivative term, which is too singular to be estimated as a linear error. One of our novel ideas is to use the time integral of the temporal corrector perturbation of the Navier–Stokes equations as the temporal corrector perturbation for the hyperbolic Navier–Stokes equations. 
    more » « less