skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Upscaling Methane Flux From Plot Level to Eddy Covariance Tower Domains in Five Alaskan Tundra Ecosystems
Spatial heterogeneity in methane (CH 4 ) flux requires a reliable upscaling approach to reach accurate regional CH 4 budgets in the Arctic tundra. In this study, we combined the CLM-Microbe model with three footprint algorithms to scale up CH 4 flux from a plot level to eddy covariance (EC) tower domains (200 m × 200 m) in the Alaska North Slope, for three sites in Utqiaġvik (US-Beo, US-Bes, and US-Brw), one in Atqasuk (US-Atq) and one in Ivotuk (US-Ivo), for a period of 2013–2015. Three footprint algorithms were the homogenous footprint (HF) that assumes even contribution of all grid cells, the gradient footprint (GF) that assumes gradually declining contribution from center grid cells to edges, and the dynamic footprint (DF) that considers the impacts of wind and heterogeneity of land surface. Simulated annual CH 4 flux was highly consistent with the EC measurements at US-Beo and US-Bes. In contrast, flux was overestimated at US-Brw, US-Atq, and US-Ivo due to the higher simulated CH 4 flux in early growing seasons. The simulated monthly CH 4 flux was consistent with EC measurements but with different accuracies among footprint algorithms. At US-Bes in September 2013, RMSE and NNSE were 0.002 μmol m −2  s −1 and 0.782 using the DF algorithm, but 0.007 μmol m −2  s −1 and 0.758 using HF and 0.007 μmol m −2  s −1 and 0.765 using GF, respectively. DF algorithm performed better than the HF and GF algorithms in capturing the temporal variation in daily CH 4 flux each month, while the model accuracy was similar among the three algorithms due to flat landscapes. Temporal variations in CH 4 flux during 2013–2015 were predominately explained by air temperature (67–74%), followed by precipitation (22–36%). Spatial heterogeneities in vegetation fraction and elevation dominated the spatial variations in CH 4 flux for all five tower domains despite relatively weak differences in simulated CH 4 flux among three footprint algorithms. The CLM-Microbe model can simulate CH 4 flux at both plot and landscape scales at a high temporal resolution, which should be applied to other landscapes. Integrating land surface models with an appropriate algorithm provides a powerful tool for upscaling CH 4 flux in terrestrial ecosystems.  more » « less
Award ID(s):
2145130 1702797 1932900
PAR ID:
10341457
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Environmental Science
Volume:
10
ISSN:
2296-665X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Spatial heterogeneities in soil hydrology have been confirmed as a key control on CO2and CH4fluxes in the Arctic tundra ecosystem. In this study, we applied a mechanistic ecosystem model, CLM‐Microbe, to examine the microtopographic impacts on CO2and CH4fluxes across seven landscape types in Utqiaġvik, Alaska: trough, low‐centered polygon (LCP) center, LCP transition, LCP rim, high‐centered polygon (HCP) center, HCP transition, and HCP rim. We first validated the CLM‐Microbe model against static‐chamber measured CO2and CH4fluxes in 2013 for three landscape types: trough, LCP center, and LCP rim. Model application showed that low‐elevation and thus wetter landscape types (i.e., trough, transitions, and LCP center) had larger CH4emissions rates with greater seasonal variations than high‐elevation and drier landscape types (rims and HCP center). Sensitivity analysis indicated that substrate availability for methanogenesis (acetate, CO2 + H2) is the most important factor determining CH4emission, and vegetation physiological properties largely affect the net ecosystem carbon exchange and ecosystem respiration in Arctic tundra ecosystems. Modeled CH4emissions for different microtopographic features were upscaled to the eddy covariance (EC) domain with an area‐weighted approach before validation against EC‐measured CH4fluxes. The model underestimated the EC‐measured CH4flux by 20% and 25% at daily and hourly time steps, suggesting the importance of the time step in reporting CH4flux. The strong microtopographic impacts on CO2and CH4fluxes call for a model‐data integration framework for better understanding and predicting carbon flux in the highly heterogeneous Arctic landscape. 
    more » « less
  2. The positive Arctic–methane (CH4) feedback forms when more CH4is released from the Arctic tundra to warm the climate, further stimulating the Arctic to emit CH4. This study utilized the CLM-Microbe model to project CH4emissions across five distinct Arctic tundra ecosystems on the Alaska North Slope, considering three Shared Socioeconomic Pathway (SSP) scenarios using climate data from three climate models from 2016 to 2100. Employing a hyper-resolution of 5 m × 5 m within 40,000 m2domains accounted for the Arctic tundra’s high spatial heterogeneity; three sites were near Utqiaġvik (US-Beo, US-Bes, and US-Brw), with one each in Atqasuk (US-Atq) and Ivotuk (US-Ivo). Simulated CH4emissions substantially increased by a factor of 5.3 to 7.5 under the SSP5–8.5 scenario compared to the SSP1–2.6 and SSP2–4.5 scenarios. The projected CH4emissions exhibited a stronger response to rising temperature under the SSP5–8.5 scenario than under the SSP1–2.6 and SSP2–4.5 scenarios, primarily due to strong temperature dependence and the enhanced precipitation-induced expansion of anoxic conditions that promoted methanogenesis. The CH4transport via ebullition and plant-mediated transport is projected to increase under all three SSP scenarios, and ebullition dominated CH4transport by 2100 across five sites. Projected CH4emissions varied in temperature sensitivity, with a Q10range of 2.7 to 60.9 under SSP1–2.6, 3.8 to 17.6 under SSP2–4.5, and 5.7 to 17.2 under SSP5–8.5. Compared with the other three sites, US-Atq and US-Ivo were estimated to have greater increases in CH4emissions due to warmer temperatures and higher precipitation. The fact that warmer sites and warmer climate scenarios had higher CH4emissions suggests an intensified positive Arctic–CH4feedback in the 21st century. Microbial physiology and substrate availability dominated the enhanced CH4production. The simulated intensified positive feedback underscores the urgent need for a more mechanistic understanding of CH4dynamics and the development of strategies to mitigate CH4across the Arctic. 
    more » « less
  3. Abstract The Arctic is warming at twice the rate of the global mean. This warming could further stimulate methane (CH4) emissions from northern wetlands and enhance the greenhouse impact of this region. Arctic wetlands are extremely heterogeneous in terms of geochemistry, vegetation, microtopography, and hydrology, and therefore CH4fluxes can differ dramatically within the metre scale. Eddy covariance (EC) is one of the most useful methods for estimating CH4fluxes in remote areas over long periods of time. However, when the areas sampled by these EC towers (i.e. tower footprints) are by definition very heterogeneous, due to encompassing a variety of environmental conditions and vegetation types, modelling environmental controls of CH4emissions becomes even more challenging, confounding efforts to reduce uncertainty in baseline CH4emissions from these landscapes. In this study, we evaluated the effect of footprint variability on CH4fluxes from two EC towers located in wetlands on the North Slope of Alaska. The local domain of each of these sites contains well developed polygonal tundra as well as a drained thermokarst lake basin. We found that the spatiotemporal variability of the footprint, has a significant influence on the observed CH4fluxes, contributing between 3% and 33% of the variance, depending on site, time period, and modelling method. Multiple indices were used to define spatial heterogeneity, and their explanatory power varied depending on site and season. Overall, the normalised difference water index had the most consistent explanatory power on CH4fluxes, though generally only when used in concert with at least one other spatial index. The spatial bias (defined here as the difference between the mean for the 0.36 km2domain around the tower and the footprint-weighted mean) was between ∣51∣% and ∣18∣% depending on the index. This study highlights the need for footprint modelling to infer the representativeness of the carbon fluxes measured by EC towers in these highly heterogeneous tundra ecosystems, and the need to evaluate spatial variability when upscaling EC site-level data to a larger domain. 
    more » « less
  4. This paper describes the formation of, and initial results for, a new FLUXNET coordination network for ecosystem-scale methane (CH 4 ) measurements at 60 sites globally, organized by the Global Carbon Project in partnership with other initiatives and regional flux tower networks. The objectives of the effort are presented along with an overview of the coverage of eddy covariance (EC) CH 4 flux measurements globally, initial results comparing CH 4 fluxes across the sites, and future research directions and needs. Annual estimates of net CH 4 fluxes across sites ranged from −0.2 ± 0.02 g C m –2 yr –1 for an upland forest site to 114.9 ± 13.4 g C m –2 yr –1 for an estuarine freshwater marsh, with fluxes exceeding 40 g C m –2 yr –1 at multiple sites. Average annual soil and air temperatures were found to be the strongest predictor of annual CH 4 flux across wetland sites globally. Water table position was positively correlated with annual CH 4 emissions, although only for wetland sites that were not consistently inundated throughout the year. The ratio of annual CH 4 fluxes to ecosystem respiration increased significantly with mean site temperature. Uncertainties in annual CH 4 estimates due to gap-filling and random errors were on average ±1.6 g C m –2 yr –1 at 95% confidence, with the relative error decreasing exponentially with increasing flux magnitude across sites. Through the analysis and synthesis of a growing EC CH 4 flux database, the controls on ecosystem CH 4 fluxes can be better understood, used to inform and validate Earth system models, and reconcile differences between land surface model- and atmospheric-based estimates of CH 4 emissions. 
    more » « less
  5. Abstract Microbial processes are crucial in producing and oxidizing biological methane (CH4) in natural wetlands. Therefore, modeling methanogenesis and methanotrophy is advantageous for accurately projecting CH4cycling. Utilizing the CLM‐Microbe model, which explicitly represents the growth and death of methanogens and methanotrophs, we demonstrate that genome‐enabled model parameterization improves model performance in four natural wetlands. Compared to the default model parameterization against CH4flux, genomic‐enabled model parameterization added another contain on microbial biomass, notably enhancing the precision of simulated CH4flux. Specifically, the coefficient of determination (R2) increased from 0.45 to 0.74 for Sanjiang Plain, from 0.78 to 0.89 for Changbai Mountain, and from 0.35 to 0.54 for Sallie's Fen, respectively. A drop inR2was observed for the Dajiuhu nature wetland, primarily caused by scatter data points. Theil's coefficient (U) and model efficiency (ME) confirmed the model performance from default parameterization to genome‐enabled model parameterization. Compared with the model solely calibrated to surface CH4flux, additional constraints of functional gene data led to better CH4seasonality; meanwhile, genome‐enabled model parameterization established more robust associations between simulated CH4production rates and environmental factors. Sensitivity analysis underscored the pivotal role of microbial physiology in governing CH4flux. This genome‐enabled model parameterization offers a valuable promise to integrate fast‐cumulating genomic data with CH4models to better understand microbial roles in CH4in the era of climate change. 
    more » « less