skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nematicity and Glassy Behavior Probed by Nuclear Magnetic Resonance in Iron-Based Superconductors
Nuclear magnetic resonance provides a wealth of information about the magnetic and nematic degrees of freedom in the iron-based superconductors. A striking observation is that the spin lattice relaxation rate is inhomogeneous with a standard deviation that correlates with the nematic susceptibility. Moreover, the spin lattice relaxation is strongly affected by uniaxial strain, and in doped samples it depends sensitively upon the history of the applied strain. These observations suggest that quenched strain fields associated with doping atoms induce a nematic glass in the iron pnictide materials.  more » « less
Award ID(s):
1807889
PAR ID:
10341542
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Physics
Volume:
10
ISSN:
2296-424X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding how magnetic nuclei affect spin relaxation is vital for designing robust spin coherence in magnetic materials and molecules. A key question is the extent that magnetic nuclei close to a spin (e.g., in the ligand shell of a metal complex) influence relaxation and how it varies over different classes of nuclei. Herein, we apply high-field EPR, X-band EPR, and ac magnetic susceptibility techniques to a family of five V(IV) complexes of the type [V(C6X4O2)3]2–, featuring five different sets of 12 nuclear spins on the ligand shell: X = 1H (1), 2H (2), 19F (3), 35/37Cl (4), and 79/81Br (5). We found several unanticipated results in these studies. For example, at high-field/-frequency, we found that compound 1, with the highest-magnetic-moment ligand nuclear spins, exhibits the longest phase memory relaxation times of the series. Furthermore, at lower fields, we found that the spin–lattice relaxation time and its field dependence were ligand-dependent, despite no obvious change in electronic structure across the five species. Based on this data, structural comparisons, and Raman spectroscopic data, we tentatively conclude that the spin–lattice relaxation properties of 1–5 stem from fine-tuning of the local magnetic environment with changing identity of the X atoms. 
    more » « less
  2. null (Ed.)
    Abstract A small in-plane external uniaxial pressure has been widely used as an effective method to acquire single domain iron pnictide BaFe 2 As 2 , which exhibits twin-domains without uniaxial strain below the tetragonal-to-orthorhombic structural (nematic) transition temperature T s . Although it is generally assumed that such a pressure will not affect the intrinsic electronic/magnetic properties of the system, it is known to enhance the antiferromagnetic (AF) ordering temperature T N ( <  T s ) and create in-plane resistivity anisotropy above T s . Here we use neutron polarization analysis to show that such a strain on BaFe 2 As 2 also induces a static or quasi-static out-of-plane ( c -axis) AF order and its associated critical spin fluctuations near T N / T s . Therefore, uniaxial pressure necessary to detwin single crystals of BaFe 2 As 2 actually rotates the easy axis of the collinear AF order near T N / T s , and such effects due to spin-orbit coupling must be taken into account to unveil the intrinsic electronic/magnetic properties of the system. 
    more » « less
  3. Hemoglobin (Hb) is a multifaceted protein, classified as a metalloprotein, chromoprotein, and globulin. It incorporates iron, which plays a crucial role in transporting oxygen within red blood cells. Hb functions by carrying oxygen from the respiratory organs to diverse tissues in the body, where it releases oxygen to fuel aerobic respiration, thus supporting the organism's metabolic processes. Hb can exist in several forms, primarily distinguished by the oxidation state of the iron in the heme group, including methemoglobin (MetHb). Measuring the concentration of MetHb is crucial because it cannot transport oxygen; hence, higher concentrations of MetHb in the blood causes methemoglobinemia. Here, we use optically detected magnetic relaxometry of paramagnetic iron spins in MetHb drop-cast onto a nanostructured diamond doped with shallow high-density nitrogen-vacancy (NV) spin qubits. We vary the concentration of MetHb in the range of 6 × 106–1.8 × 107 adsorbed Fe+3 spins per micrometer squared and observe an increase in the NV relaxation rate Γ1 (=1/T1, where T1 is the NV spin lattice relaxation time) up to 2 × 103 s−1. NV magnetic relaxometry of MetHb in phosphate-buffered saline solution shows a similar effect with an increase in Γ1 to 6.7 × 103 s−1 upon increasing the MetHb concentration to 100 μM. The increase in NV Γ1 is explained by the increased spin noise coming from the Fe+3 spins present in MetHb proteins. This study presents an additional usage of NV quantum sensors to detect paramagnetic centers of biomolecules at volumes below 100 picoliter. 
    more » « less
  4. Abstract Magnetic insulators, such as the rare‐earth iron garnets, are promising materials for energy‐efficient spintronic memory and logic devices, and their anisotropy, magnetization, and other properties can be tuned over a wide range through selection of the rare‐earth ion. Films are typically grown as epitaxial single crystals on garnet substrates, but integration of these materials with conventional electronic devices requires growth on Si. The growth, magnetic, and spin transport properties of polycrystalline films of dysprosium iron garnet (DyIG) with perpendicular magnetic anisotropy (PMA) on Si substrates and as single crystal films on garnet substrates are reported. PMA originates from magnetoelastic anisotropy and is obtained by controlling the strain state of the film through lattice mismatch or thermal expansion mismatch with the substrates. DyIG/Si exhibits large grain sizes and bulk‐like magnetization and compensation temperature. Polarized neutron reflectometry demonstrates a small interfacial nonmagnetic region near the substrate. Spin Hall magnetoresistance measurements conducted on a Pt/DyIG/Si heterostructure demonstrate a large interfacial spin mixing conductance between the Pt and DyIG comparable to other garnet/Pt heterostructures. 
    more » « less
  5. We report results of magnetization and 19F NMR measurements in the normal state of as-grown vacuum-annealed LaO0.5⁢F0.5⁡BiS2. The magnetization is dominated by a temperature-independent diamagnetic component and a field- and temperature-dependent paramagnetic contribution 𝑀𝜇⁡(𝐻,𝑇) from a ∼1000 ppm concentration of local moments, an order of magnitude higher than can be accounted for by measured rare-earth impurity concentrations. 𝑀𝜇⁡(𝐻,𝑇) can be fit by the Brillouin function 𝐵𝐽⁡(𝑥) or, perhaps more realistically, a two-level tanh⁡(𝑥) model for magnetic Bi 6⁢𝑝 ions in defect crystal fields. Both fits require a phenomenological Curie-Weiss argument 𝑥=𝜇eff⁢𝐻⁡/(𝑇+𝑇𝑊), 𝑇𝑊≈1.7 K. There is no evidence for magnetic order down to 2 K, and the origin of 𝑇𝑊 is not clear. 19F frequency shifts, linewidths, and spin-lattice relaxation rates are consistent with purely dipolar 19F/defect-spin interactions. The defect-spin correlation time 𝜏𝑐⁡(𝑇) obtained from 19F spin-lattice relaxation rates obeys the Korringa relation 𝜏𝑐⁢𝑇=const, indicating the relaxation is dominated by conduction-band fluctuations. 
    more » « less