Imputing missing data is a critical task in data-driven intelligent transportation systems. During recent decades there has been a considerable investment in developing various types of sensors and smart systems, including stationary devices (e.g., loop detectors) and floating vehicles equipped with global positioning system (GPS) trackers to collect large-scale traffic data. However, collected data may not include observations from all road segments in a traffic network for different reasons, including sensor failure, transmission error, and because GPS-equipped vehicles may not always travel through all road segments. The first step toward developing real-time traffic monitoring and disruption prediction models is to estimate missing values through a systematic data imputation process. Many of the existing data imputation methods are based on matrix completion techniques that utilize the inherent spatiotemporal characteristics of traffic data. However, these methods may not fully capture the clustered structure of the data. This paper addresses this issue by developing a novel data imputation method using PARATUCK2 decomposition. The proposed method captures both spatial and temporal information of traffic data and constructs a low-dimensional and clustered representation of traffic patterns. The identified spatiotemporal clusters are used to recover network traffic profiles and estimate missing values. The proposed method is implemented using traffic data in the road network of Manhattan in New York City. The performance of the proposed method is evaluated in comparison with two state-of-the-art benchmark methods. The outcomes indicate that the proposed method outperforms the existing state-of-the-art imputation methods in complex and large-scale traffic networks.
more »
« less
Spatiotemporal Traffic Volume Estimation Model Based on GPS Samples
Effective road traffic assessment and estimation is crucial not only for traffic management applications, but also for long-term trans- portation and, more generally, urban planning. Traditionally, this task has been achieved by using a network of stationary traffic count sensors. These costly and unreliable sensors have been replaced with so-called Probe Vehicle Data (PVD), which relies on sampling individual vehicles in traffic using for example smartphones to assess the overall traffic condition. While PVD provides uniform road network coverage, it does not capture the actual traffic flow. On the other hand, stationary sensors capture the absolute traffic flow only at discrete locations. Furthermore, these sensors are often unreliable; temporary mal- functions create gaps in their time-series of measurements. This work bridges the gap between these two data sources by learning the time-dependent fraction of vehicles captured by GPS-based probe data at discrete stationary sensor locations. We can then account for the gaps of the traffic-loop measurements by using the PVD data to estimate the actual total flow. In this work, we show that the PVD flow capture changes sig- nificantly over time in the Washington DC area. Exploiting this information, we are able to derive tight confidence intervals of the traffic volume for areas with no stationary sensor coverage.
more »
« less
- Award ID(s):
- 1637541
- PAR ID:
- 10063109
- Date Published:
- Journal Name:
- SIGMOD GEORICH Workshop
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With the trend of vehicles becoming increasingly connected and potentially autonomous, vehicles are being equipped with rich sensing and communication devices. Various vehicular services based on shared real-time sensor data of vehicles from a fleet have been proposed to improve the urban efficiency, e.g., HD-live map, and traffic accident recovery. However, due to the high cost of data uploading (e.g., monthly fees for a cellular network), it would be impractical to make all well-equipped vehicles to upload real-time sensor data constantly. To better utilize these limited uploading resources and achieve an optimal road segment sensing coverage, we present a real-time sensing task scheduling framework, i.e., RISC, for Resource-Constraint modeling for urban sensing by scheduling sensing tasks of commercial vehicles with sensors based on the predictability of vehicles' mobility patterns. In particular, we utilize the commercial vehicles, including taxicabs, buses, and logistics trucks as mobile sensors to sense urban phenomena, e.g., traffic, by using the equipped vehicular sensors, e.g., dash-cam, lidar, automotive radar, etc. We implement RISC on a Chinese city Shenzhen with one-month real-world data from (i) a taxi fleet with 14 thousand vehicles; (ii) a bus fleet with 13 thousand vehicles; (iii) a truck fleet with 4 thousand vehicles. Further, we design an application, i.e., track suspect vehicles (e.g., hit-and-run vehicles), to evaluate the performance of RISC on the urban sensing aspect based on the data from a regular vehicle (i.e., personal car) fleet with 11 thousand vehicles. The evaluation results show that compared to the state-of-the-art solutions, we improved sensing coverage (i.e., the number of road segments covered by sensing vehicles) by 10% on average.more » « less
-
Traffic Behavior Recognition from Traffic Videos under Occlusion Condition: A Kalman Filter ApproachReal-time traffic data at intersections is significant for development of adaptive traffic light control systems. Sensors such as infrared radiation and GPS are not capable of providing detailed traffic information. Compared with these sensors, surveillance cameras have the potential to provide real scenes for traffic analysis. In this research, a You Only Look Once (YOLO)-based algorithm is employed to detect and track vehicles from traffic videos, and a predefined road mask is used to determine traffic flow and turning events in different roads. A Kalman filter is used to estimate and predict vehicle speed and location under the condition of background occlusion. The result shows that the proposed algorithm can identify traffic flow and turning events at a root mean square error (RMSE) of 10. The result shows that a Kalman filter with an intersection of union (IOU)-based tracker performs well at the condition of background occlusion. Also, the proposed algorithm can detect and track vehicles at different optical conditions. Bad weather and night-time will influence the detecting and tracking process in areas far from traffic cameras. The traffic flow extracted from traffic videos contains road information, so it can not only help with single intersection control, but also provides information for a road network. The temporal characteristic of observed traffic flow gives the potential to predict traffic flow based on detected traffic flow, which will make the traffic light control more efficient.more » « less
-
null (Ed.)Recent decades have witnessed the breakthrough of autonomous vehicles (AVs), and the sensing capabilities of AVs have been dramatically improved. Various sensors installed on AVs will be collecting massive data and perceiving the surrounding traffic continuously. In fact, a fleet of AVs can serve as floating (or probe) sensors, which can be utilized to infer traffic information while cruising around the roadway networks. Unlike conventional traffic sensing methods relying on fixed location sensors or moving sensors that acquire only the information of their carrying vehicle, this paper leverages data from AVs carrying sensors for not only the information of the AVs, but also the characteristics of the surrounding traffic. A high-resolution data-driven traffic sensing framework is proposed, which estimates the fundamental traffic state characteristics, namely, flow, density and speed in high spatio-temporal resolutions and of each lane on a general road, and it is developed under different levels of AV perception capabilities and for any AV market penetration rate. Experimental results show that the proposed method achieves high accuracy even with a low AV market penetration rate. This study would help policymakers and private sectors (e.g., Waymo) to understand the values of massive data collected by AVs in traffic operation and management.more » « less
-
Road authorities worldwide can leverage the advances in vehicle technology by continuously monitoring their roads’ conditions to minimize road maintenance costs. The existing methods for carrying out road condition surveys involve manual observations using standard survey forms, performed by qualified personnel. These methods are expensive, time-consuming, infrequent, and can hardly provide real-time information. Some automated approaches also exist but are very expensive since they require special vehicles equipped with computing devices and sensors for data collection and processing. This research aims to leverage the advances in vehicle technology in providing a cheap and real-time approach to carry out road condition monitoring (RCM). This study developed a deep learning model using the You Only Look Once, Version 5 (YOLOv5) algorithm that was trained to capture and categorize flexible pavement distresses (FPD) and reached 95% precision, 93.4% recall, and 97.2% mean Average Precision. Using vehicle built-in cameras and GPS sensors, these distresses were detected, images were captured, and locations were recorded. This was validated on campus roads and parking lots using a car featured with a built-in camera and GPS. The vehicles’ built-in technologies provided a more cost-effective and efficient road condition monitoring approach that could also provide real-time road conditions.more » « less
An official website of the United States government

