This content will become publicly available on June 1, 2025
- Award ID(s):
- 1951890
- PAR ID:
- 10560379
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Urban Mobility
- Volume:
- 5
- Issue:
- C
- ISSN:
- 2667-0917
- Page Range / eLocation ID:
- 100071
- Subject(s) / Keyword(s):
- Safety Bike lane Speed Tactical urbanism
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Preceding vehicles typically dominate the movement of following vehicles in traffic systems, thereby significantly influencing the efficacy of eco-driving control that concentrates on vehicle speed optimization. To potentially mitigate the negative effect of preceding vehicles on eco-driving control at the signalized intersection, this study proposes an overtaking-enabled eco-approach control (OEAC) strategy. It combines driving lane planning and speed optimization for connected and automated vehicles to relax the first-in-first-out queuing policy at the signalized intersection, minimizing the host vehicle’s energy consumption and travel delay. The OEAC adopts a two-stage receding horizon control framework to derive optimal driving trajectories for adapting to dynamic traffic conditions. In the first stage, the driving lane optimization problem is formulated as a Markov decision process and solved using dynamic programming, which takes into account the uncertain disturbance from preceding vehicles. In the second stage, the vehicle’s speed trajectory with the minimal driving cost is optimized rapidly using Pontryagin’s minimum principle to obtain the closed-form analytical optimal solution. Extensive simulations are conducted to evaluate the effectiveness of the OEAC. The results show that the OEAC is excellent in driving cost reduction over constant speed and regular eco-approach and departure strategies in various traffic scenarios, with an average improvement of 20.91% and 5.62%, respectively.more » « less
-
Meng, Meng (Ed.)Managed lanes, such as a dedicated lane for connected and automated vehicles (CAVs), can provide not only technological accommodation but also desired market incentives for road users to adopt CAVs in the near future. In this paper, we investigate traffic flow characteristics with two configurations of the managed lane across different market penetration rates and quantify the benefits from the perspectives of lane-level headway distribution, fuel consumption, communication density, and overall network performance. The results highlight the benefits of implementing managed lane strategies for CAVs: (1) A dedicated CAV lane significantly extends the stable region of the speed-flow diagram and yields a greater road capacity. As the result shows, the highest flow rate is 3400 vehicles per hour per lane at 90% market penetration rate with one CAV lane. (2) The concentration of CAVs in one lane results in a narrower headway distribution (with smaller standard deviation) even with partial market penetration. (3) A dedicated CAV lane is also able to eliminate duel-bell-shape distribution that is caused by the heterogeneous traffic flow. (4) A dedicated CAV lane creates a more consistent CAV density, which facilitates communication activity and decreases the probability of packet dropping.more » « less
-
Autonomous vehicles are expected to improve road safety and efficiency in future transportation systems. A driving simulator study was designed to identify driving styles and the cooperation between human drivers and other AVs. The study captured driver’s following behavior in a fully autonomous driving environment at unsignalized intersections. Participants were asked to make a series of maneuvers (straight through intersection, left turn, and right turn) in two different speed conditions (30, 40 mph) and two different traffic density conditions (with or without other traffic). Analysis of Variance showed that drivers had a significantly larger deviation (defined as the area between two trajectories) during left turn maneuvers when they were traveling at higher speeds. Moreover, the first turning operation had smaller deviation than the second turning operation. The findings have implications for the design of driver-assistance guidance systems in future mixed autonomous and non-autonomous traffic flows.more » « less
-
This paper explores the challenges in developing an inexpensive on-bicycle sensing system to track vehicles at a traffic intersection. In particular, opposing traffic with vehicles that can travel straight or turn left are considered. The estimated vehicle trajectories can be used for collision prevention between bicycles and left-turning vehicles. A compact solid-state 2-D low-density Lidar is mounted at the front of a bicycle to obtain distance measurements from vehicles. Vehicle tracking can be achieved by clustering based approaches for assigning measurement points to individual vehicles, introducing a correction term for position measurement refinement, and by exploiting data association and interacting multiple model Kalman filtering approaches for multi-target tracking. The tracking performance of the developed system is evaluated by both simulation and experimental results. Two types of scenarios that involve straight driving and left turning vehicles are considered. Experimental results show that the developed system can successfully track cars in these scenarios accurately in spite of the low measurement density of the sensor.more » « less
-
Lane-changing maneuvers on highways may cause capacity drops, create shock waves, and potentially increase collision risks. Properly managing lane-changing behavior to reduce these adverse impacts requires an understanding of their determinants. This paper investigates the determinants of lane changing in congested traffic using a next generation simulation dataset. A random parameters binary logit model with heterogeneity in means and variances was estimated to account for unobserved heterogeneity in lane-changing behavior across vehicles. Estimation results show that average headway, the original lane of the vehicle, driver acceleration/deceleration behavior, and vehicle size all significantly influence lane-changing probabilities. It was further found that the effect of vehicle size varied significantly across observations, that the mean of this variation decreased with increasing average headway, and the variance increased with increasing driver acceleration/deceleration. These empirical findings provide interesting new evidence on the determinants of lane changing, which can be used in traffic flow models to better replicate and predict traffic flow.