skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy
Providing privacy protection has been one of the primary motivations of Federated Learning (FL). Recently, there has been a line of work on incorporating the formal privacy notion of differential privacy with FL. To guarantee the client-level differential privacy in FL algorithms, the clients’ transmitted model updates have to be clipped before adding privacy noise. Such clipping operation is substantially different from its counterpart of gradient clipping in the centralized differentially private SGD and has not been well-understood. In this paper, we first empirically demonstrate that the clipped FedAvg can perform surprisingly well even with substantial data heterogeneity when training neural networks, which is partly because the clients’ updates become similar for several popular deep architectures. Based on this key observation, we provide the convergence analysis of a differential private (DP) FedAvg algorithm and highlight the relationship between clipping bias and the distribution of the clients’ updates. To the best of our knowledge, this is the first work that rigorously investigates theoretical and empirical issues regarding the clipping operation in FL algorithms.  more » « less
Award ID(s):
1727757 1910385
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Conference on Machine Learning
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Federated Learning (FL) is a promising framework for multiple clients to learn a joint model without directly sharing the data. In addition to high utility of the joint model, rigorous privacy protection of the data and communication efficiency are important design goals. Many existing efforts achieve rigorous privacy by ensuring differential privacy for intermediate model parameters, however, they assume a uniform privacy parameter for all the clients. In practice, different clients may have different privacy requirements due to varying policies or preferences. In this paper, we focus on explicitly modeling and leveraging the heterogeneous privacy requirements of different clients and study how to optimize utility for the joint model while minimizing communication cost. As differentially private perturbations affect the model utility, a natural idea is to make better use of information submitted by the clients with higher privacy budgets (referred to as "public" clients, and the opposite as "private" clients). The challenge is how to use such information without biasing the joint model. We propose P rojected F ederated A veraging (PFA), which extracts the top singular subspace of the model updates submitted by "public" clients and utilizes them to project the model updates of "private" clients before aggregating them. We then propose communication-efficient PFA+, which allows "private" clients to upload projected model updates instead of original ones. Our experiments verify the utility boost of both algorithms compared to the baseline methods, whereby PFA+ achieves over 99% uplink communication reduction for "private" clients. 
    more » « less
  2. Federated Learning (FL) allows individual clients to train a global model by aggregating local model updates each round. This results in collaborative model training while main-taining the privacy of clients' sensitive data. However, malicious clients can join the training process and train with poisoned data or send artificial model updates in targeted poisoning attacks. Many defenses to targeted poisoning attacks rely on anomaly-detection based metrics which remove participants that deviate from the majority. Similarly, aggregation-based defenses aim to reduce the impact of outliers, while L2-norm clipping tries to scale down the impact of malicious models. However, oftentimes these defenses misidentify benign clients as malicious or only work under specific attack conditions. In our paper, we examine the effectiveness of two anomaly -detection metrics on three different aggregation methods, in addition to the presence of L2-norm clipping and weight selection, across two different types of attacks. We also combine different defenses in order to examine their interaction and examine each defense when no attack is present. We found minimum aggregation to be the most effective defense against label-flipping attacks, whereas both minimum aggregation and geometric median worked well against distributed backdoor attacks. Using random weight selection significantly deteriorated defenses against both attacks, whereas the use of clipping made little difference. Finally, the main task accuracy was directly correlated with the BA in the label-flipping attack and generally was close to the MA in benign scenarios. However, in the DBA the MA and BA are inversely correlated and the MA fluctuates greatly. 
    more » « less
  3. Motivated by the ever-increasing concerns on personal data privacy and the rapidly growing data volume at local clients, federated learning (FL) has emerged as a new machine learning setting. An FL system is comprised of a central parameter server and multiple local clients. It keeps data at local clients and learns a centralized model by sharing the model parameters learned locally. No local data needs to be shared, and privacy can be well protected. Nevertheless, since it is the model instead of the raw data that is shared, the system can be exposed to the poisoning model attacks launched by malicious clients. Furthermore, it is challenging to identify malicious clients since no local client data is available on the server. Besides, membership inference attacks can still be performed by using the uploaded model to estimate the client's local data, leading to privacy disclosure. In this work, we first propose a model update based federated averaging algorithm to defend against Byzantine attacks such as additive noise attacks and sign-flipping attacks. The individual client model initialization method is presented to provide further privacy protections from the membership inference attacks by hiding the individual local machine learning model. When combining these two schemes, privacy and security can be both effectively enhanced. The proposed schemes are proved to converge experimentally under non-lID data distribution when there are no attacks. Under Byzantine attacks, the proposed schemes perform much better than the classical model based FedAvg algorithm. 
    more » « less
  4. Matrix factorization (MF) approximates unobserved ratings in a rating matrix, whose rows correspond to users and columns correspond to items to be rated, and has been serving as a fundamental building block in recommendation systems. This paper comprehensively studies the problem of matrix factorization in different federated learning (FL) settings, where a set of parties want to cooperate in training but refuse to share data directly. We first propose a generic algorithmic framework for various settings of federated matrix factorization (FMF) and provide a theoretical convergence guarantee. We then systematically characterize privacy-leakage risks in data collection, training, and publishing stages for three different settings and introduce privacy notions to provide end-to-end privacy protections. The first one is vertical federated learning (VFL), where multiple parties have the ratings from the same set of users but on disjoint sets of items. The second one is horizontal federated learning (HFL), where parties have ratings from different sets of users but on the same set of items. The third setting is local federated learning (LFL), where the ratings of the users are only stored on their local devices. We introduce adapted versions of FMF with the privacy notions guaranteed in the three settings. In particular, a new private learning technique called embedding clipping is introduced and used in all the three settings to ensure differential privacy. For the LFL setting, we combine differential privacy with secure aggregation to protect the communication between user devices and the server with a strength similar to the local differential privacy model, but much better accuracy. We perform experiments to demonstrate the effectiveness of our approaches. 
    more » « less
  5. Federated Averaging (FedAvg) and its variants are the most popular optimization algorithms in federated learning (FL). Previous convergence analyses of FedAvg either assume full client participation or partial client participation where the clients can be uniformly sampled. However, in practical cross-device FL systems, only a subset of clients that satisfy local criteria such as battery status, network connectivity, and maximum participation frequency requirements (to ensure privacy) are available for training at a given time. As a result, client availability follows a natural cyclic pattern. We provide (to our knowledge) the first theoretical framework to analyze the convergence of FedAvg with cyclic client participation with several different client optimizers such as GD, SGD, and shuffled SGD. Our analysis discovers that cyclic client participation can achieve a faster asymptotic convergence rate than vanilla FedAvg with uniform client participation under suitable conditions, providing valuable insights into the design of client sampling protocols. 
    more » « less