skip to main content

This content will become publicly available on December 1, 2023

Title: Coupled Calculations of Data Center Cooling and Power Distribution Systems
Abstract Physics-based modeling aids in designing efficient data center power and cooling systems. These systems have traditionally been modeled independently under the assumption that the inherent coupling of effects between the systems has negligible impact. This study tests the assumption through uncertainty quantification of models for a typical 300 kW data center supplied through either an alternating current (AC)-based or direct current (DC)-based power distribution system. A novel calculation scheme is introduced that couples the calculations of these two systems to estimate the resultant impact on predicted power usage effectiveness (PUE), computer room air conditioning (CRAC) return temperature, total system power requirement, and system power loss values. A two-sample z-test for comparing means is used to test for statistical significance with 95% confidence. The power distribution component efficiencies are calibrated to available published and experimental data. The predictions for a typical data center with an AC-based system suggest that the coupling of system calculations results in statistically significant differences for the cooling system PUE, the overall PUE, the CRAC return air temperature, and total electrical losses. However, none of the tested metrics are statistically significant for a DC-based system. The predictions also suggest that a DC-based system provides statistically significant lower more » overall PUE and electrical losses compared to the AC-based system, but only when coupled calculations are used. These results indicate that the coupled calculations impact predicted general energy efficiency metrics and enable statistically significant conclusions when comparing different data center cooling and power distribution strategies. « less
Authors:
;
Award ID(s):
1738782
Publication Date:
NSF-PAR ID:
10341785
Journal Name:
Journal of Electronic Packaging
Volume:
144
Issue:
4
ISSN:
1043-7398
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  2. Massive data center (DC) energy demands lead to water consumption concerns. This study quantifies on-site and off-site DC water consumption and its holistic impact on regional water availability. This study proposes a new DC sustainability metrics, Water Scarcity Usage Effectiveness (WSUE), that captures the holistic impacts of water consumption on regional water availability by considering electricity and water source locations and their associated water scarcity. We examine the water consumption of various DC cooling systems by tracking on-site water consumption along with the direct and indirect water transfers associated with electricity transmission at the contiguous U.S. balancing authority (BA) level. This study then applies the WSUE metric for different DC cooling systems and locations to compare the holistic water stress impact by large on-site water consuming systems (e.g., via cooling towers) versus systems with higher electrical consumption and lower on-site water consumption such as the conventional use of computer room air conditioner (CRAC) units. Results suggest that WSUE is strongly dependent on location, and a water-intensive cooling solution could result in a lower WSUE than a solution requiring no or less on-site water consumption. The use of the WSUE metric aids in DC siting decisions and DC cooling system designmore »from a sustainability point of view.« less
  3. UPS (Uninterruptible Power Supply) units and batteries are essential subsystems in data centers or telecom industries to protect equipment from electrical power spikes, surges and power outages. UPS units handle electrical power and dissipate a large amount of heat, and possess a high efficiency. Therefore, cooling units (e.g., CRACs) are needed to manage the thermal reliability of this equipment. On the other hand, battery operating conditions and reliability are closely related to the ambient temperature according to battery manufacturers; reliability increases when the ambient room temperature is around 25ºC. This study analyzed different room configurations and scenarios using the commercial CFD software 6Sigma Room DCXTM. As a first approach, we evaluated the thermal behavior and cooling degradation using standard thermal performance metrics SHI (Supply Heat Index) and RHI (Return Heat Index). These are frequently implemented in data centers to measure the level of mixing between cold and hot air streams. The results from this evaluation showed that standard cooling practices are inefficient, as values for the two metrics differed considerably from industry recommendations. We also considered a metric from the second law of thermodynamics using exergy destruction. This technique allowed us to find the mechanisms that increase entropy generation themore »most, including viscous shear and air stream mixing. Reducing exergy destruction will result in lessening lost thermodynamic work and thus reduce energy required for cooling. Typically, UPS and batteries are located in different rooms due to the hydrogen generation by the batteries. The integration of both equipment in the same room is a new concept, and this study aims to analyze the thermal performance of the room. Adding controllability showed improvements by reducing the exergy destruction due to viscous dissipation while slightly increasing thermal mixing in the rooms. Ducting the return flows to avoid flow mixing increased pressure drop, but reduced heat transfer between the hot and cold air streams, which in turn, improved the thermal performance. In the study, we determined the optimal configuration and possible strategies to improve cooling while maintaining desirable battery temperatures.« less
  4. This study presents an experimental and numerical characterization of pressure drop in a commercially available direct liquid cooled (DLC) rack. It is important to investigate the pressure drop in the DLC system as it determines the required pumping power for the DLC system, which affects the energy efficiency of the data center. The main objective of this research is to assess the flow rate and pressure distributions in a DLC system to enhance the reliability and the cooling system efficiency. Other objectives of this research are to evaluate the accuracy of flow network modeling (FNM) in predicting the flow distribution in a DLC rack and identify manufacturing limitations in a commercial system that could impact the cooling system reliability. The main components of the investigated DLC system are: coolant distribution module (CDM), supply/return manifold module, and server module which contains a cold plate. Extensive experimental measurements were performed to study the flow distribution and to determine the pressure characteristic curves for the server modules and the coolant distribution module (CDM). Also, a methodology was described to develop an experimentally validated flow network model (FNM) of the DLC system to obtain high accuracy. The measurements revealed a flow maldistribution among themore »server modules, which is attributed to the manufacturing process of the micro-channel cold plate. The average errors in predicting the flow rate of the server module and the CDM using FNM are 2.5% and 3.8%, respectively. The accuracy and the short run time make FNM a good tool for design, analysis, and optimization for DLC systems. The pressure drop in the server module is found to account for 56% of the total pressure drop in the DLC rack. Further analysis showed that 69% of the pressure drop in the server module is associated with the module's plumbing (corrugated hoses, disconnects, fittings). The server cooling modules are designed to provide secured connections and flexibility, which come with a high pressure drop cost.« less
  5. The most common approach to air cooling of data centers involves the pressurization of the plenum beneath the raised floor and delivery of air flow to racks via perforated floor tiles. This cooling approach is thermodynamically inefficient due in large part to the pressure losses through the tiles. Furthermore, it is difficult to control flow at the aisle and rack level since the flow source is centralized rather than distributed. Distributed cooling systems are more closely coupled to the heat generating racks. In overhead cooling systems, one can distribute flow to distinct aisles by placing the air mover and water cooled heat exchanger directly above an aisle. Two arrangements are possible: (i.) placing the air mover and heat exchanger above the cold aisle and forcing downward flow of cooled air into the cold aisle (Overhead Downward Flow (ODF)), or (ii.) placing the air mover and heat exchanger above the hot aisle and forcing heated air upwards from the hot aisle through the water cooled heat exchanger (Overhead Upward Flow (OUF)). This study focuses on the steady and transient behavior of overhead cooling systems in both ODF and OUF configurations and compares their cooling effectiveness and energy efficiency. The flow andmore »heat transfer inside the servers and heat exchangers are modeled using physics based approaches that result in differential equation based mathematical descriptions. These models are programmed in the MATLAB™ language and embedded within a CFD computational environment (using the commercial code FLUENT™) that computes the steady or instantaneous airflow distribution. The complete computational model is able to simulate the complete flow and thermal field in the airside, the instantaneous temperatures within and pressure drops through the servers, and the instantaneous temperatures within and pressure drops through the overhead cooling system. Instantaneous overall energy consumption (1st Law) and exergy destruction (2nd Law) were used to quantify overall energy efficiency and to identify inefficiencies within the two systems. The server cooling effectiveness, based on an effectiveness-NTU model for the servers, was used to assess the cooling effectiveness of the two overhead cooling approaches« less