skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermal Control Strategies for Reliable and Energy-Efficient Data Centers
Two self-developed control schemes, ON/OFF and supervisory control and data acquisition (SCADA), were applied on a hybrid evaporative and direct expansion (DX)-based model data center cooling system to assess the impact of controls on reliability and energy efficiency. These control schemes can be applied independently or collectively, thereby saving the energy spent on mechanical refrigeration by using airside economization and/or evaporative cooling. Various combinations of system-level controls and component-level controls are compared to a baseline no-controls case. The results show that reliability is consistently met by employing only sophisticated component-level controls. However, the recommended conditions are met approximately 50% of the simulated time by employing system-level controls only (i.e., SCADA) but with a reduction in data center cooling system power usage effectiveness (PUE) values from 3.76 to 1.42. Moreover, the recommended conditions are met at all averaged times with an even lower cooling system PUE of 1.13 by combining system-level controls only (SCADA and ON/OFF controls). Thus, the study introduces a simple method to compare control schemes for reliable and energy-efficient data center operation. The work also highlights a potential source of capital expenses and operating expenses savings for data center owners by switching from expensive built-in component-based controls to inexpensive, yet effective, system-based controls that can easily be imbedded into existing data center infrastructure systems management.  more » « less
Award ID(s):
1738782
PAR ID:
10157520
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Electronic Packaging
Volume:
141
Issue:
4
ISSN:
1043-7398
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With an increase in the need for energy efficient data centers, a lot of research is being done to maximize the use of Air Side Economizers (ASEs), Direct Evaporative Cooling (DEC), Indirect Evaporative Cooling (IEC) and multistage Indirect/Direct Evaporative Cooling (I/DEC). The selection of cooling configurations installed in modular cooling units is based on empirical/analytical studies and domain knowledge that fail to account for the nonlinearities present in an operational data center. In addition to the ambient conditions, the attainable cold aisle temperature and humidity is also a function of the control strategy and the cooling setpoints in the data center.The primary objective of this study is to use Artificial Neural Network (ANN) modelling and Psychrometric bin analysis to assess the applicability of various cooling modes to a climatic condition. Training dataset for the ANN model is logged from the monitoring sensor array of a modular data center laboratory with an I/DEC module. The data-driven ANN model is utilized for predicting the cold aisle humidity and temperatures for different modes of cooling. Based on the predicted cold aisle temperature and humidity, cold aisle envelopes are represented on a psychrometric chart to evaluate the applicability of each cooling mode to the territorial climatic condition. Subsequently, outside air conditions favorable to each cooling mode in achieving cold aisle conditions, within the ASHRAE recommended environmental envelope, is also visualized on a psychrometric chart. Control strategies and opportunities to optimize the cooling system are discussed. 
    more » « less
  2. The development of lithium-ion battery technology has ensured that battery thermal management systems are an essential component of the battery pack for next-generation energy storage systems. Using dielectric immersion cooling, researchers have demonstrated the ability to attain high heat transfer rates due to the direct contact between cells and the coolant. However, feedback control has not been widely applied to immersion cooling schemes. Furthermore, current research has not considered battery pack plant design when optimizing feedback control. Uncertainties are inherent in the cooling equipment, resulting in temperature and flow rate fluctuations. Hence, it is crucial to systematically consider these uncertainties during cooling system design to improve the performance and reliability of the battery pack. To fill this gap, we established a reliability-based control co-design optimization framework using machine learning for immersion cooled battery packs. We first developed an experimental setup for 21700 battery immersion cooling, and the experiment data were used to build a high-fidelity multiphysics finite element model. The model can precisely represent the electrical and thermal profile of the battery. We then developed surrogate models based on the finite element simulations in order to reduce computational cost. The reliability-based control co-design optimization was employed to find the best plant and control design for the cooling system, in which an outer optimization loop minimized the cooling system cost while an inner loop ensured battery pack reliability. Finally, an optimal cooling system design was obtained and validated, which showed a 90% saving in cooling system energy consumption. 
    more » « less
  3. Abstract Airside economizers lower the operating cost of data centers by reducing or eliminating mechanical cooling. It, however, increases the risk of reliability degradation of information technology (IT) equipment due to contaminants. IT Equipment manufacturers have tested equipment performance and guarantee the reliability of their equipment in environments within ISA 71.04-2013 severity level G1 and the ASHRAE recommended temperature-relative humidity (RH) envelope. IT Equipment manufacturers require data center operators to meet all the specified conditions consistently before fulfilling warranty on equipment failure. To determine the reliability of electronic hardware in higher severity conditions, field data obtained from real data centers are required. In this study, a corrosion classification coupon experiment as per ISA 71.04-2013 was performed to determine the severity level of a research data center (RDC) located in an industrial area of hot and humid Dallas. The temperature-RH excursions were analyzed based on time series and weather data bin analysis using trend data for the duration of operation. After some period, a failure was recorded on two power distribution units (PDUs) located in the hot aisle. The damaged hardware and other hardware were evaluated, and cumulative corrosion damage study was carried out. The hypothetical estimation of the end of life of components is provided to determine free air-cooling hours for the site. There was no failure of even a single server operated with fresh air-cooling shows that using evaporative/free air cooling is not detrimental to IT equipment reliability. This study, however, must be repeated in other geographical locations to determine if the contamination effect is location dependent. 
    more » « less
  4. The objective of this work is to introduce the application of an artificial neural network (ANN) to assist in the evaporative cooling in data centers. To achieve this task, we employ the neural network algorithms to predict weather conditions outside the data center for direct evaporative cooling (DEC) operations. The predictive analysis helps optimize the cooling control strategy for maximizing the usage of evaporative cooling thereby improving the efficiency of the overall data center cooling system. A typical artificial neural network architecture is dynamic in nature and can perform adaptive learning in minimal computation time. A neural network model of a data center was created using operational historical data collected from a data center cooling control system. The neural network model allows the control of the modular data center (MDC) cooling at optimum configuration in two ways. First way is that the network model minimizes time delay for switching the cooling from one mode to the other. Second way, it improves the reaction behavior of the cooling equipment if an unexpected ambient condition change should come. The data center in consideration is a test bed modular data center that comprises of information Technology (IT) racks, Direct Evaporative cooling (DEC) and Indirect Evaporative Cooling (IEC) modules; the DEC/IEC are used together or in alternative mode to cool the data center room. The facility essentially utilizes outside ambient temperature and humidity conditions that are further conditioned by the DEC and IEC to cool the electronics, a concept know as air-side economization. Various parameters are related to the cooling system operation such as outside air temperature, IT heat load, cold aisle temperature, cold aisle humidity etc. are considered. Some of these parameters are fed into the artificial neural network as inputs and some are set as targets to train the neural network system. After the training the process is completed, certain bucket of data is tested and further used to validate the outputs for various other weather conditions. To make sure the analysis represents real world scenario, the operational data used are from real time data logged on the MDC cooling control unit. Overall, the neural network model is trained and is used to successfully predict the weather conditions and cooling control parameters. The prediction models have been demonstrated for the outputs that are static in nature (Levenberg Marquardt method) as well as the outputs that are dynamic in nature i.e., step-ahead & multistep ahead techniques. 
    more » « less
  5. The complexity of the power system has increased due to recent grid modernization and active distribution systems. As a result, monitoring and controlling modern power systems have become challenging. Dynamic security assessment (DSA) in power systems is a critical operational situational awareness (OpSA) tool for the energy control center (ECC). State-of-the-art (SOTA) DSA has been based on traditional state estimation utilizing the supervisory control and data acquisition (SCADA) / phasor measurement units (PMU) and transmission network topology processing (TNTP) based on SCADA monitoring of relay signals (TNTP-SMRS). Due to the slow data rates of SCADA, these applications cannot efficiently support an online DSA tool. Furthermore, an inaccurate network model based on TNTP-SMRS can lead to erroneous DSA. In this paper, a distributed dynamic security assessment (D-DSA) based on multilevel distributed linear state estimation (D-LSE) and efficient and reliable hierarchical transmission network topology processing utilizing synchrophasor network (H-TNTP-PMU) has been proposed. The tool can be used in real-time operation at the ECC of modern power systems. D-DSA architecture comprises three levels, namely Level 1 - component level security assessment (substations and transmission lines), Level 2 - area level security assessment, and Level 3 - network level security assessment. D-DSA concurrently evaluates all available substations’ security in the substation security assessment (SSA) and all available transmission lines’ security in the transmission line security assessment (TSA). Under the area security assessment (ASA), all SSA and TSA in each area are separately integrated to assess the area SSI (ASI-SSI) and TSI (ASI-TSI). Subsequently, each area’s area-level security index (ASI) is calculated by fusing ASI-SSI and ASI-TSI. At the network level security assessment, network SSI (NSI-SSI) and TSI (NSI-TSI) are estimated by fusing all ASI-SSIs and ASI-TSI, respectively. Network level security index (NSI) is estimated by fusing the NSISSI and NSI-TSI in network security assessment (NSA). Typical results of D-DSA are presented for two test systems, the modified two-area four-machine power system model and the IEEE 68 bus power system model. Results indicate that the proposed D-DSA can complete the assessment accurately at the PMU data frame rate, enabling online security assessment regardless of the network size. 
    more » « less