skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Empirical evaluation of circuit approximations on noisy quantum devices
Noisy Intermediate-Scale Quantum (NISQ) devices fail to produce outputs with sufficient fidelity for deep circuits with many gates today. Such devices suffer from read-out, multi-qubit gate and crosstalk noise combined with short decoherence times limiting circuit depth. This work develops a methodology to generate shorter circuits with fewer multi-qubit gates whose unitary transformations approximate the original reference one. It explores the benefit of such generated approximations under NISQ devices. Experimental results with Grover’s algorithm, multiple-control Toffoli gates, and the Transverse Field Ising Model show that such approximate circuits produce higher fidelity results than longer, theoretically precise circuits on NISQ devices, especially when the reference circuits have many CNOT gates to begin with. With this ability to fine-tune circuits, it is demonstrated that quantum computations can be performed for more complex problems on today’s devices than was feasible before, sometimes even with a gain in overall precision by up to 60%.  more » « less
Award ID(s):
2120757 1747426 1818914
PAR ID:
10341828
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
SC '21: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The current phase of quantum computing is in the Noisy Intermediate-Scale Quantum (NISQ) era. On NISQ devices, two-qubit gates such as CNOTs are much noisier than single-qubit gates, so it is essential to minimize their count. Quantum circuit synthesis is a process of decomposing an arbitrary unitary into a sequence of quantum gates, and can be used as an optimization tool to produce shorter circuits to improve overall circuit fidelity. However, the time-to-solution of synthesis grows exponentially with the number of qubits. As a result, synthesis is intractable for circuits on a large qubit scale. In this paper, we propose a hierarchical, block-by-block opti-mization framework, QGo, for quantum circuit optimization. Our approach allows an exponential cost optimization to scale to large circuits. QGo uses a combination of partitioning and synthesis: 1) partition the circuit into a sequence of independent circuit blocks; 2) re-generate and optimize each block using quantum synthesis; and 3) re-compose the final circuit by stitching all the blocks together. We perform our analysis and show the fidelity improvements in three different regimes: small-size circuits on real devices, medium-size circuits on noisy simulations, and large-size circuits on analytical models. Our technique can be applied after existing optimizations to achieve higher circuit fidelity. Using a set of NISQ benchmarks, we show that QGo can reduce the number of CNOT gates by 29.9% on average and up to 50% when compared with industrial compiler optimizations such as t|ket). When executed on the IBM Athens system, shorter depth leads to higher circuit fidelity. We also demonstrate the scalability of our QGo technique to optimize circuits of 60+ qubits, Our technique is the first demonstration of successfully employing and scaling synthesis in the compilation tool chain for large circuits. Overall, our approach is robust for direct incorporation in production compiler toolchains to further improve the circuit fidelity. 
    more » « less
  2. Quantum algorithms will likely play a key role in future high-performance-computing (HPC) environments. These algorithms are typically expressed as quantum circuits composed of arbitrary gates or as unitary matrices. Executing these on physical devices, however, requires translation to device-compatible circuits, in a process called quantum compilation or circuit synthesis, since these devices support a limited number of native gates. Moreover, these devices typically have specific qubit topologies, which constrain how and where gates can be applied. Consequently, logical qubits in input circuits and unitaries may need to be mapped to and routed between physical qubits. Furthermore, current Noisy Intermediate-Scale Quantum (NISQ) devices present additional constraints. They are vulnerable to errors during gate application and their short decoherence times lead to qubits rapidly succumbing to accumulated noise and possibly corrupting computations. Therefore, circuits synthesized for NISQ devices need to minimize gates and execution times. The problem of synthesizing device-compatible circuits, while optimizing for low gate count and short execution times, can be shown to be computationally intractable using analytical methods. Therefore, interest has grown towards heuristics-based synthesis techniques, which are able to produce approximations of the desired algorithm, while optimizing depth and gate-count. In this work, we investigate using genetic algorithms (GA)—a proven gradient-free optimization technique based on natural selection—for circuit synthesis. In particular, we formulate the quantum synthesis problem as a multi-objective optimization (MOO) problem, with the objectives of minimizing the approximation error, number of multi-qubit gates, and circuit depth. We also employ fuzzy logic for runtime parameter adaptation of GA to enhance search efficiency and solution quality in our proposed method. 
    more » « less
  3. Running quantum programs is fraught with challenges on on today’s noisy intermediate scale quantum (NISQ) devices. Many of these challenges originate from the error characteristics that stem from rapid decoherence and noise during measurement, qubit connections, crosstalk, the qubits themselves, and transformations of qubit state via gates. Not only are qubits not “created equal”, but their noise level also changes over time. IBM is said to calibrate their quantum systems once per day and reports noise levels (errors) at the time of such calibration. This information is subsequently used to map circuits to higher quality qubits and connections up to the next calibration point. This work provides evidence that there is room for improvement over this daily calibration cycle. It contributes a technique to measure noise levels (errors) related to qubits immediately before executing one or more sensitive circuits and shows that just-in-time noise measurements can benefit late physical qubit mappings. With this just-in-time recalibrated transpilation, the fidelity of results is improved over IBM’s default mappings, which only uses their daily calibrations. The framework assess two major sources of noise, namely readout errors (measurement errors) and two-qubit gate/connection errors. Experiments indicate that the accuracy of circuit results improves by 3-304% on average and up to 400% with on-the-fly circuit mappings based on error measurements just prior to application execution. 
    more » « less
  4. Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away - we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing. 
    more » « less
  5. Quantum computing (QC) is a new paradigm offering the potential of exponential speedups over classical computing for certain computational problems. Each additional qubit doubles the size of the computational state space available to a QC algorithm. This exponential scaling underlies QC’s power, but today’s Noisy Intermediate-Scale Quantum (NISQ) devices face significant engineering challenges in scalability. The set of quantum circuits that can be reliably run on NISQ devices is limited by their noisy operations and low qubit counts. This paper introduces CutQC, a scalable hybrid computing approach that combines classical computers and quantum computers to enable evaluation of quantum circuits that cannot be run on classical or quantum computers alone. CutQC cuts large quantum circuits into smaller subcircuits, allowing them to be executed on smaller quantum devices. Classical postprocessing can then reconstruct the output of the original circuit. This approach offers significant runtime speedup compared with the only viable current alternative -- purely classical simulations -- and demonstrates evaluation of quantum circuits that are larger than the limit of QC or classical simulation. Furthermore, in real-system runs, CutQC achieves much higher quantum circuit evaluation fidelity using small prototype quantum computers than the state-of-the-art large NISQ devices achieve. Overall, this hybrid approach allows users to leverage classical and quantum computing resources to evaluate quantum programs far beyond the reach of either one alone. 
    more » « less