skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reoptimization of Quantum Circuits via Hierarchical Synthesis
The current phase of quantum computing is in the Noisy Intermediate-Scale Quantum (NISQ) era. On NISQ devices, two-qubit gates such as CNOTs are much noisier than single-qubit gates, so it is essential to minimize their count. Quantum circuit synthesis is a process of decomposing an arbitrary unitary into a sequence of quantum gates, and can be used as an optimization tool to produce shorter circuits to improve overall circuit fidelity. However, the time-to-solution of synthesis grows exponentially with the number of qubits. As a result, synthesis is intractable for circuits on a large qubit scale. In this paper, we propose a hierarchical, block-by-block opti-mization framework, QGo, for quantum circuit optimization. Our approach allows an exponential cost optimization to scale to large circuits. QGo uses a combination of partitioning and synthesis: 1) partition the circuit into a sequence of independent circuit blocks; 2) re-generate and optimize each block using quantum synthesis; and 3) re-compose the final circuit by stitching all the blocks together. We perform our analysis and show the fidelity improvements in three different regimes: small-size circuits on real devices, medium-size circuits on noisy simulations, and large-size circuits on analytical models. Our technique can be applied after existing optimizations to achieve higher circuit fidelity. Using a set of NISQ benchmarks, we show that QGo can reduce the number of CNOT gates by 29.9% on average and up to 50% when compared with industrial compiler optimizations such as t|ket). When executed on the IBM Athens system, shorter depth leads to higher circuit fidelity. We also demonstrate the scalability of our QGo technique to optimize circuits of 60+ qubits, Our technique is the first demonstration of successfully employing and scaling synthesis in the compilation tool chain for large circuits. Overall, our approach is robust for direct incorporation in production compiler toolchains to further improve the circuit fidelity.  more » « less
Award ID(s):
1730449 2016136 1818914
PAR ID:
10323231
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Rebooting Computing (ICRC), 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantum algorithms will likely play a key role in future high-performance-computing (HPC) environments. These algorithms are typically expressed as quantum circuits composed of arbitrary gates or as unitary matrices. Executing these on physical devices, however, requires translation to device-compatible circuits, in a process called quantum compilation or circuit synthesis, since these devices support a limited number of native gates. Moreover, these devices typically have specific qubit topologies, which constrain how and where gates can be applied. Consequently, logical qubits in input circuits and unitaries may need to be mapped to and routed between physical qubits. Furthermore, current Noisy Intermediate-Scale Quantum (NISQ) devices present additional constraints. They are vulnerable to errors during gate application and their short decoherence times lead to qubits rapidly succumbing to accumulated noise and possibly corrupting computations. Therefore, circuits synthesized for NISQ devices need to minimize gates and execution times. The problem of synthesizing device-compatible circuits, while optimizing for low gate count and short execution times, can be shown to be computationally intractable using analytical methods. Therefore, interest has grown towards heuristics-based synthesis techniques, which are able to produce approximations of the desired algorithm, while optimizing depth and gate-count. In this work, we investigate using genetic algorithms (GA)—a proven gradient-free optimization technique based on natural selection—for circuit synthesis. In particular, we formulate the quantum synthesis problem as a multi-objective optimization (MOO) problem, with the objectives of minimizing the approximation error, number of multi-qubit gates, and circuit depth. We also employ fuzzy logic for runtime parameter adaptation of GA to enhance search efficiency and solution quality in our proposed method. 
    more » « less
  2. Despite rapid advances in quantum computing technologies, the qubit connectivity limitation remains to be a critical challenge. Both near-term NISQ quantum computers and relatively long-term scalable quantum architectures do not offer full connectivity. As a result, quantum circuits may not be directly executed on quantum hardware, and a quantum compiler needs to perform qubit routing to make the circuit compatible with the device layout. During the qubit routing step, the compiler inserts SWAP gates and performs circuit transformations. Given the connectivity topology of the target hardware, there are typically multiple qubit routing candidates. The state-of-the-art compilers use a cost function to evaluate the number of SWAP gates for different routes and then select the one with the minimum number of SWAP gates. After qubit routing, the quantum compiler performs gate optimizations upon the circuit with the newly inserted SWAP gates. In this paper, we observe that the aforementioned qubit routing is not optimal, and qubit routing should not be independent on subsequent gate optimizations. We find that with the consideration of gate optimizations, not all of the SWAP gates have the same basis-gate cost. These insights lead to the development of our qubit routing algorithm, NASSC (Not All Swaps have the Same Cost). NASSC is the first algorithm that considers the subsequent optimizations during the routing step. Our optimization-aware qubit routing leads to better routing decisions and benefits subsequent optimizations. We also propose a new optimization-aware decomposition for the inserted SWAP gates. Our experiments show that the routing overhead compiled with our routing algorithm is reduced by up to 69.30% (21.30% on average) in the number of CNOT gates and up to 43.50% (7.61% on average) in the circuit depth compared with the state-of-the-art scheme, SABRE. 
    more » « less
  3. Noisy Intermediate-Scale Quantum (NISQ) devices fail to produce outputs with sufficient fidelity for deep circuits with many gates today. Such devices suffer from read-out, multi-qubit gate and crosstalk noise combined with short decoherence times limiting circuit depth. This work develops a methodology to generate shorter circuits with fewer multi-qubit gates whose unitary transformations approximate the original reference one. It explores the benefit of such generated approximations under NISQ devices. Experimental results with Grover’s algorithm, multiple-control Toffoli gates, and the Transverse Field Ising Model show that such approximate circuits produce higher fidelity results than longer, theoretically precise circuits on NISQ devices, especially when the reference circuits have many CNOT gates to begin with. With this ability to fine-tune circuits, it is demonstrated that quantum computations can be performed for more complex problems on today’s devices than was feasible before, sometimes even with a gain in overall precision by up to 60%. 
    more » « less
  4. Instruction scheduling is a key compiler optimization in quantum computing, just as it is for classical computing. Current schedulers optimize for data parallelism by allowing simultaneous execution of instructions, as long as their qubits do not overlap. However, on many quantum hardware platforms, instructions on overlapping qubits can be executed simultaneously through global interactions. For example, while fan-out in traditional quantum circuits can only be implemented sequentially when viewed at the logical level, global interactions at the physical level allow fan-out to be achieved in one step. We leverage this simultaneous fan-out primitive to optimize circuit synthesis for NISQ (Noisy Intermediate-Scale Quantum) workloads. In addition, we introduce novel quantum memory architectures based on fan-out.Our work also addresses hardware implementation of the fan-out primitive. We perform realistic simulations for trapped ion quantum computers. We also demonstrate experimental proof-of-concept of fan-out with superconducting qubits. We perform depth (runtime) and fidelity estimation for NISQ application circuits and quantum memory architectures under realistic noise models. Our simulations indicate promising results with an asymptotic advantage in runtime, as well as 7–24% reduction in error. 
    more » « less
  5. Running quantum programs is fraught with challenges on on today’s noisy intermediate scale quantum (NISQ) devices. Many of these challenges originate from the error characteristics that stem from rapid decoherence and noise during measurement, qubit connections, crosstalk, the qubits themselves, and transformations of qubit state via gates. Not only are qubits not “created equal”, but their noise level also changes over time. IBM is said to calibrate their quantum systems once per day and reports noise levels (errors) at the time of such calibration. This information is subsequently used to map circuits to higher quality qubits and connections up to the next calibration point. This work provides evidence that there is room for improvement over this daily calibration cycle. It contributes a technique to measure noise levels (errors) related to qubits immediately before executing one or more sensitive circuits and shows that just-in-time noise measurements can benefit late physical qubit mappings. With this just-in-time recalibrated transpilation, the fidelity of results is improved over IBM’s default mappings, which only uses their daily calibrations. The framework assess two major sources of noise, namely readout errors (measurement errors) and two-qubit gate/connection errors. Experiments indicate that the accuracy of circuit results improves by 3-304% on average and up to 400% with on-the-fly circuit mappings based on error measurements just prior to application execution. 
    more » « less