skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Color from Real Reality to Extended Reality
As the development of extended reality technologies bring us closer to what some call the metaverse, it is valuable to investigate how our perception of color translates from physical, reflective objects to emissive and transparent virtual renderings. Colorimetry quantifies color stimuli and color differences, and color appearance models account for adaptation and illuminance level. However, these tools do not extent satisfactorily to the novel viewing experiences of extended reality. Ongoing research aims to understand the perception of layered virtual stimuli in optical see-through augmented reality with the goal of improving or extending color appearance models. This will help ensure robust, predictable color reproduction in extended reality experiences.  more » « less
Award ID(s):
1942755
PAR ID:
10341848
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of 3rd International Symposium for Color Science and Art 2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rogowitz, Bernice E; Pappas, Thrasyvoulos N (Ed.)
    Augmented reality (AR) combines elements of the real world with additional virtual content, creating a blended viewing environment. Optical see-through AR (OST-AR) accomplishes this by using a transparent beam splitter to overlay virtual elements over a user’s view of the real world. However, the inherent see-through nature of OST-AR carries challenges for color appearance, especially around the appearance of darker and less chromatic objects. When displaying human faces—a promising application of AR technology—these challenges disproportionately affect darker skin tones, making them appear more transparent than lighter skin tones. Still, some transparency in the rendered object may not be entirely negative; people’s evaluations of transparency when interacting with other humans in AR-mediated modalities are not yet fully understood. In this work, two psychophysical experiments were conducted to assess how people evaluate OST-AR transparency across several characteristics including different skin tones, object types, lighting conditions, and display types. The results provide a scale of perceived transparency allowing comparisons to transparency for conventional emissive displays. The results also demonstrate how AR transparency impacts perceptions of object preference and fit within the environment. These results reveal several areas with need for further attention, particularly regarding darker skin tones, lighter ambient lighting, and displaying human faces more generally. This work may be useful in guiding the development of OST-AR technology, and emphasizes the importance of AR design goals, perception of human faces, and optimizing visual appearance in extended reality systems. 
    more » « less
  2. Green, Phil (Ed.)
    Head‐mounted virtual reality (VR) and augmented reality (AR) systems deliver colour imagery directly to a user's eyes, presenting position‐aware, real‐time computer graphics to create the illusion of interacting with a virtual world. In some respects, colour in AR and VR can be modelled and controlled much like colour in other display technologies. However, it is complicated by the optics required for near‐eye display, and in the case of AR, by the merging of real‐world and virtual visual stimuli. Methods have been developed to provide predictable colour in VR, and ongoing research has exposed details of the visual perception of real and virtual in AR. Yet, more work is required to make colour appearance predictable and AR and VR display systems more robust. 
    more » « less
  3. Advancements in computer technology have revolutionized extended reality (XR) experiences, including augmented reality (AR), virtual reality (VR), mixed reality (MR), and 360° photography and videography. These technologies have found widespread adoption in various educational contexts, from K-12 schools to universities. However, community and technical colleges in the United States have been slower to adopt these innovative instructional modalities. This study aims to investigate the factors influencing the adoption of XR technologies at 2-year institutions, guided by the consolidated framework for implementation research (CFIR). A qualitative research approach was applied by interviewing 13 educators from 2-year colleges to identify their perception and the challenges faced while implementing XR-enabled instruction. Limited availability of XR educational content, restricted development opportunities of XR content, limited integration of these technologies with existing learning management systems, resource constraints and training needs of educators are some of the factors that hinder implementation of these technologies at 2-year colleges. 
    more » « less
  4. Augmented reality (AR) devices seek to create compelling visual experiences that merge virtual imagery with the natural world. These devices often rely on wearable near-eye display systems that can optically overlay digital images to the left and right eyes of the user separately. Ideally, the two eyes should be shown images with minimal radiometric differences (e.g., the same overall luminance, contrast, and color in both eyes), but achieving this binocular equality can be challenging in wearable systems with stringent demands on weight and size. Basic vision research has shown that a spectrum of potentially detrimental perceptual effects can be elicited by imagery with radiometric differences between the eyes, but it is not clear whether and how these findings apply to the experience of modern AR devices. In this work, we first develop a testing paradigm for assessing multiple aspects of visual appearance at once, and characterize five key perceptual factors when participants viewed stimuli with interocular contrast differences. In a second experiment, we simulate optical see-through AR imagery using conventional desktop LCD monitors and use the same paradigm to evaluate the multi-faceted perceptual implications when the AR display luminance differs between the two eyes. We also include simulations of monocular AR systems (i.e., systems in which only one eye sees the displayed image). Our results suggest that interocular contrast differences can drive several potentially detrimental perceptual effects in binocular AR systems, such as binocular luster, rivalry, and spurious depth differences. In addition, monocular AR displays tend to have more artifacts than binocular displays with a large contrast difference in the two eyes. A better understanding of the range and likelihood of these perceptual phenomena can help inform design choices that support high-quality user experiences in AR. 
    more » « less
  5. Display technologies in the fields of virtual and augmented reality affect the appearance of human representations, such as avatars used in telepresence or entertainment applications, based on the user’s current viewing conditions. With changing viewing conditions, it is possible that the perceived appearance of one’s avatar changes in an unexpected or undesired manner, which may change user behavior towards these avatars and cause frustration in using the AR display. In this paper, we describe a user study (N=20) where participants saw themselves in a mirror standing next to their own avatar through use of a HoloLens 2 optical see-through head-mounted display. Participants were tasked to match their avatar’s appearance to their own under two environment lighting conditions (200 lux and 2,000 lux). Our results showed that the intensity of environment lighting had a significant effect on participants selected skin colors for their avatars, where participants with dark skin colors tended to make their avatar’s skin color lighter, nearly to the level of participants with light skin color. Further, in particular female participants made their avatar’s hair color darker for the lighter environment lighting condition. We discuss our results with a view on technological limitations and effects on the diversity of avatar representations on optical see-through displays. 
    more » « less