skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metabolomic analysis of honey bee ( Apis mellifera L.) response to glyphosate exposure
Glyphosate is among the world's most commonly used herbicides in agriculture and weed control. The use of this agrochemical has unintended consequences on non-target organisms, such as honey bees ( Apis mellifera L. ), the Earth's most prominent insect pollinator. However, detailed understanding of the biological effects in bees in response to sub-lethal glyphosate exposure is still limited. In this study, 1 H NMR-based metabolomics was performed to investigate whether oral exposure to an environmentally realistic concentration (7.12 mg L −1 ) of glyphosate affects the regulation of honey bee metabolites in 2, 5, and 10 days. On Day 2 of glyphosate exposure, the honey bees showed significant downregulation of several essential amino acids, including leucine, lysine, valine, and isoleucine. This phenomenon indicates that glyphosate causes an obvious metabolic perturbation when the honey bees are subjected to the initial caging process. The mid-term (Day 5) results showed negligible metabolite-level perturbation, which indicated the low glyphosate impact on active honeybees. However, the long-term (Day 10) data showed evident separation between the control and experimental groups in the principal component analysis (PCA). This separation is the result of the combinatorial changes of essential amino acids such as threonine, histidine, and methionine, while the non-essential amino acids glutamine and proline as well as the carbohydrate sucrose were all downregulated. In summary, our study demonstrates that although no significant behavioral differences were observed in honey bees under sub-lethal doses of glyphosate, metabolomic level perturbation can be observed under short-term exposure when met with other environmental stressors or long-term exposure.  more » « less
Award ID(s):
2137575
PAR ID:
10342125
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Molecular Omics
ISSN:
2515-4184
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Insecticides are a major tool for controlling pest species. Their widespread use results in damage to non-targeted insects, with honey bees particularly at risk. During foraging, honey bees learn and remember floral charac teristics that are associated with food. As insect pollinators, honey bees inadvertently contact chemicals which can have multiple negative impacts. The toxicity of two insecticides from different classes, ethion (47.79 mg a.i. L − 1 ) and hexaflumuron (500 mg a.i.L − 1 ), on learning, memory, and sensory perception were evaluated. We found that oral exposure to ethion had adverse effects on learned proboscis extension toward reward-associated odors and colors. In addition, we showed reduced sucrose consumption and sucrose responsiveness after expo sure. Hexaflumuron also impaired olfactory learning and memory and decreased responsiveness to sucrose and water. Exposure to sub-lethal concentration of the cholinergic organophosphate insecticide, ethion (47.79 mg a.i. L − 1 ), and the field-recommended concentration of hexaflumuron (500 mg a.i.L − 1 ), significantly impaired behavior involved in foraging. Our results suggest that several behavioral characteristics of honey bees be evaluated when testing an insecticide rather than relying on just one behavioral measure. 
    more » « less
  2. The European honey bee, Apis mellifera L., is the single most valuable managed pollinator in the world. Poor colony health or unusually high colony losses of managed honey bees result from a myriad of stressors, which are more harmful in combination. Climate change is expected to accentuate the effects of these stressors, but the physiological and behavioral responses of honey bees to elevated temperatures while under simultaneous influence of one or more stressors remain largely unknown. Here we test the hypothesis that exposure to acute, sublethal doses of neonicotinoid insecticides reduce thermal tolerance in honey bees. We administered to bees oral doses of imidacloprid and acetamiprid at 1/5, 1/20, and1/100 of LD50 and measured their heat tolerance 4 h post- feeding, using both dynamic and static protocols. Contrary to our expectations, acute exposure to sublethal doses of both insecticides resulted in higher thermal tolerance and greater survival rates of bees. Bees that ingested the higher doses of insecticides displayed a critical thermal maximum from 2˚C to 5 ˚C greater than that of the control group, and 67%–87% reduction in mortality. Our study suggests a resilience of honey bees to high temperatures when other stressors are present, which is consistent with studies in other insects. We discuss the implications of these results and hypothesize that this compensatory effect is likely due to induction of heat shock proteins by the insecticides, which provides temporary protection from elevated temperatures 
    more » « less
  3. The use of invertebrate models has allowed researchers to examine the mechanisms behind alcoholism and its effects with a cost-effective system. In that respect, the honey bee is an ideal model species to study the effects of ethanol (EtOH) due to the behavioral and physiological similarities of honey bees with humans when alcohol is consumed. Although both ingestion and inhalation methods are used to dose subjects in insect EtOH model systems, there is little literature on the use of the EtOH vapor-exposure method for experiments using honey bees. The experiment presented here provides baseline data for a dose EtOH-hemolymph response curve when using EtOH vapor-inhalation dosing with honey bees (Apis mellifera). Bees were exposed to EtOH vapors for 0, 1, 2.5, or 5 min, and hemolymph was collected 1 min post EtOH exposure. Hemolymph samples were analyzed using gas chromatography (GC) for hemolymph EtOH concentration. The ethanol-hemolymph level of the bees increased linearly with exposure time. The results provide a dosing guide for hemolymph EtOH level in the honey bee model ethanol-inhalation system, and thus makes the honey bee model more robust. 
    more » « less
  4. Ethanol dependency affects the health of more than 15 million adults in the United States of America. Honey bees have been used as a model for ethanol studies because of similarities in neural structure to vertebrates and their complex social behaviors. This study compares honey bee free-flight visitation to a food source after exposure to ethanol in aqueous sucrose. Individual bees were followed making six attachment visits to a test-station containing 1M sucrose. After attachment, honey bees were randomly assigned to one of five groups: 0%, 2.5%, 5%, 10% EtOH, or a staged increase in ethanol concentrations (2.5%, 5%, 10%). The results indicated that honey bees tolerate up to 2.5% EtOH without avoidance or altered behavior, and up to 5% EtOH without avoidance but with slower trips. At 10% ethanol, attrition was 75% by the 18th return trip. Bees in the staged increase in concentration group were more likely to return than bees that were offered 10% ethanol in sucrose solution after attachment. The results of this study imply that ethanol-induced tolerance to the effects of ethanol can be achieved in honey bees through incremental increase in EtOH but only in terms of attrition. Other measures of foraging efficiency did not show ethanol-induced tolerance. Understanding how ethanol tolerance develops in bees may provide insight into these processes in humans with minimized ethical considerations. 
    more » « less
  5. Abstract Honey bees have suffered dramatic losses in recent years, largely due to multiple stressors underpinned by poor nutrition [1]. Nutritional stress especially harms larvae, who mature into workers unable to meet the needs of their colony [2]. In this study, we characterize the metabolic capabilities of a honey bee larvae-associated bacterium, Bombella apis (formerly Parasaccharibacter apium), and its effects on the nutritional resilience of larvae. We found that B. apis is the only bacterium associated with larvae that can withstand the antimicrobial larval diet. Further, we found that B. apis can synthesize all essential amino acids and significantly alters the amino acid content of synthetic larval diet, largely by supplying the essential amino acid lysine. Analyses of gene gain/loss across the phylogeny suggest that four amino acid transporters were gained in recent B. apis ancestors. In addition, the transporter LysE is conserved across all sequenced strains of B. apis. Finally, we tested the impact of B. apis on developing honey bee larvae subjected to nutritional stress and found that larvae supplemented with B. apis are bolstered against mass reduction despite limited nutrition. Together, these data suggest a novel role of B. apis as a nutritional mutualist of honey bee larvae. 
    more » « less