The solar wind (SW) is a vital component of space weather, providing a background for solar transients such as coronal mass ejections, stream interaction regions, and energetic particles propagating toward Earth. Accurate prediction of space weather events requires a precise description and thorough understanding of physical processes occurring in the ambient SW plasma. Ensemble simulations of the three-dimensional SW flow are performed using an empirically-driven magnetohydrodynamic heliosphere model implemented in the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS). The effect of uncertainties in the photospheric boundary conditions on the simulation outcome is investigated. The results are in good overall agreement with the observations from the Parker Solar Probe, Solar Orbiter, Solar Terrestrial Relations Observatory, and OMNI data at Earth, specifically during 2020-2021. This makes it possible to shed more light on the properties of the SW propagating through the heliosphere and perspectives for improving space weather forecasts.
more »
« less
Predicting the Solar Wind Using Empirically-driven Data-constrained Heliospheric MHD Model
The Sun emits a stream of charged particles called the solar wind, which is the primary driver of space weather and geomagnetic disturbances. Modeling and observations complement each other to help us identify and understand the physical processes governing the solar wind dynamics on different scales. Numerical models of the solar wind have greatly improved in recent years with advances in computational infrastructure and by employing data-driven or data-assimilative approaches. Designed primarily for modeling the partially ionized space plasma using adaptive mesh refinement technique on Cartesian or spherical grids, the Multi-scale Fluid-kinetic Simulation Suite (MS-FLUKSS) is arguably one of the most sophisticated numerical codes for simulating the solar wind flow. To inform potential users and interested members of the space weather community, we present a brief summary of the current state of the solar wind models developed in the MS-FLUKSS framework, with an emphasis on the 3D heliospheric MHD models driven and constrained by remote/in situ observations and empirical coronal models such as the Wang-Sheeley-Arge model. We also discuss potential scientific and operational applications of our solar wind models on prediction of space weather (e.g., high speed streams, coronal mass ejections, and interplanetary shocks) throughout the solar system.
more »
« less
- Award ID(s):
- 2028154
- PAR ID:
- 10342185
- Date Published:
- Journal Name:
- AGU Fall Meeting 2021, held in New Orleans, LA, 13-17 December 2021, id. SM53B-08.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aims : This paper presents a H2020 project aimed at developing an advanced space weather forecasting tool, combining the MagnetoHydroDynamic (MHD) solar wind and coronal mass ejection (CME) evolution modelling with solar energetic particle (SEP) transport and acceleration model(s). The EUHFORIA 2.0 project will address the geoeffectiveness of impacts and mitigation to avoid (part of the) damage, including that of extreme events, related to solar eruptions, solar wind streams, and SEPs, with particular emphasis on its application to forecast geomagnetically induced currents (GICs) and radiation on geospace. Methods : We will apply innovative methods and state-of-the-art numerical techniques to extend the recent heliospheric solar wind and CME propagation model EUHFORIA with two integrated key facilities that are crucial for improving its predictive power and reliability, namely (1) data-driven flux-rope CME models, and (2) physics-based, self-consistent SEP models for the acceleration and transport of particles along and across the magnetic field lines. This involves the novel coupling of advanced space weather models. In addition, after validating the upgraded EUHFORIA/SEP model, it will be coupled to existing models for GICs and atmospheric radiation transport models. This will result in a reliable prediction tool for radiation hazards from SEP events, affecting astronauts, passengers and crew in high-flying aircraft, and the impact of space weather events on power grid infrastructure, telecommunication, and navigation satellites. Finally, this innovative tool will be integrated into both the Virtual Space Weather Modeling Centre (VSWMC, ESA) and the space weather forecasting procedures at the ESA SSCC in Ukkel (Belgium), so that it will be available to the space weather community and effectively used for improved predictions and forecasts of the evolution of CME magnetic structures and their impact on Earth. Results : The results of the first six months of the EU H2020 project are presented here. These concern alternative coronal models, the application of adaptive mesh refinement techniques in the heliospheric part of EUHFORIA, alternative flux-rope CME models, evaluation of data-assimilation based on Karman filtering for the solar wind modelling, and a feasibility study of the integration of SEP models.more » « less
-
Abstract To address Objective II of the National Space Weather Strategy and Action Plan “Develop and Disseminate Accurate and Timely Space Weather Characterization and Forecasts” and US Congress PROSWIFT Act 116–181, our team is developing a new set of open-source software that would ensure substantial improvements of Space Weather (SWx) predictions. On the one hand, our focus is on the development of data-driven solar wind models. On the other hand, each individual component of our software is designed to have accuracy higher than any existing SWx prediction tools with a dramatically improved performance. This is done by the application of new computational technologies and enhanced data sources. The development of such software paves way for improved SWx predictions accompanied with an appropriate uncertainty quantification. This makes it possible to forecast hazardous SWx effects on the space-borne and ground-based technological systems, and on human health. Our models include (1) a new, open-source solar magnetic flux model (OFT), which evolves information to the back side of the Sun and its poles, and updates the model flux with new observations using data assimilation methods; (2) a new potential field solver (POT3D) associated with the Wang–Sheeley–Arge coronal model, and (3) a new adaptive, 4-th order of accuracy solver (HelioCubed) for the Reynolds-averaged MHD equations implemented on mapped multiblock grids (cubed spheres). We describe the software and results obtained with it, including the application of machine learning to modeling coronal mass ejections, which makes it possible to improve SWx predictions by decreasing the time-of-arrival mismatch. The tests show that our software is formally more accurate and performs much faster than its predecessors used for SWx predictions.more » « less
-
Energy stored in the magnetic field in the solar atmosphere above active regions is a key driver of all solar activity (e.g., solar flares and coronal mass ejections), some of which can affect life on Earth. Radio observations provide a unique diagnostic of the coronal magnetic fields that make them a critical tool for the study of these phenomena, using the technique of broadband radio imaging spectropolarimetry. Observations with the ngVLA will provide unique observations of coronal magnetic fields and their evolution, key inputs and constraints for MHD numerical models of the solar atmosphere and eruptive processes, and a key link between lower layers of the solar atmosphere and the heliosphere. In doing so they will also provide practical "research to operations" guidance for space weather forecasting.more » « less
-
null (Ed.)The project focuses on developing innovative tools to extract and analyze the available observational and modeling data to enable new physics-based and machine-learning approaches for understanding and predicting solar activity and its influence on the geospace and Earth systems. Numerous space and ground-based observatories produce several terabytes of multi-wavelength data, from radio waves to gamma rays, every day. Finding and processing the relevant information for specific space weather applications is currently a difficult task. The Team has developed and implemented interactive databases of solar flares and coronal holes that provide a synergy of ground-based and space observations, taking advantage of big datasets from a wide range of instruments. The databases and analysis tools allow the larger research community to significantly speed up investigations of flare events, perform a broad range of new statistical and case studies, and test and validate theoretical and computational models. The databases store, integrate, and present physical descriptors of solar flares and provide automatic real-time machine-learning identification and characterization of solar coronal holes, which are sources of open magnetic flux and fast solar wind.more » « less
An official website of the United States government

