Abstract EUropean Heliospheric FORecasting Information Asset (EUHFORIA) is a physics‐based data‐driven solar wind and coronal mass ejections (CMEs) propagation model designed for space weather forecasting and event analysis investigations. Although EUHFORIA can predict the solar wind plasma and magnetic field properties at Earth, it is not equipped to quantify the geo‐effectiveness of the solar transients in terms of geomagnetic indices like the disturbance storm time (Dst) index and the auroral indices, that quantify the impact of the magnetized plasma encounters on Earth's magnetosphere. Therefore, we couple EUHFORIA with the Open Geospace General Circulation Model (OpenGGCM), a magnetohydrodynamic model of the response of Earth's magnetosphere, ionosphere, and thermosphere to transient solar wind characteristics. In this coupling, OpenGGCM is driven by the solar wind and interplanetary magnetic field obtained from EUHFORIA simulations to produce the magnetospheric and ionospheric response to the CMEs. This coupling is validated with two observed geo‐effective CME events driven with the spheromak flux‐rope CME model. We compare these simulation results with the indices obtained from OpenGGCM simulations driven by the measured solar wind data from spacecraft. We further employ the dynamic time warping (DTW) technique to assess the model performance in predicting Dst. The main highlight of this study is to use EUHFORIA simulated time series to predict the Dst and auroral indices 1–2 days in advance, as compared to using the observed solar wind data at L1, which only provides predictions 1–2 hr before the actual impact.
more »
« less
EUropean Heliospheric FORecasting Information Asset 2.0
Aims : This paper presents a H2020 project aimed at developing an advanced space weather forecasting tool, combining the MagnetoHydroDynamic (MHD) solar wind and coronal mass ejection (CME) evolution modelling with solar energetic particle (SEP) transport and acceleration model(s). The EUHFORIA 2.0 project will address the geoeffectiveness of impacts and mitigation to avoid (part of the) damage, including that of extreme events, related to solar eruptions, solar wind streams, and SEPs, with particular emphasis on its application to forecast geomagnetically induced currents (GICs) and radiation on geospace. Methods : We will apply innovative methods and state-of-the-art numerical techniques to extend the recent heliospheric solar wind and CME propagation model EUHFORIA with two integrated key facilities that are crucial for improving its predictive power and reliability, namely (1) data-driven flux-rope CME models, and (2) physics-based, self-consistent SEP models for the acceleration and transport of particles along and across the magnetic field lines. This involves the novel coupling of advanced space weather models. In addition, after validating the upgraded EUHFORIA/SEP model, it will be coupled to existing models for GICs and atmospheric radiation transport models. This will result in a reliable prediction tool for radiation hazards from SEP events, affecting astronauts, passengers and crew in high-flying aircraft, and the impact of space weather events on power grid infrastructure, telecommunication, and navigation satellites. Finally, this innovative tool will be integrated into both the Virtual Space Weather Modeling Centre (VSWMC, ESA) and the space weather forecasting procedures at the ESA SSCC in Ukkel (Belgium), so that it will be available to the space weather community and effectively used for improved predictions and forecasts of the evolution of CME magnetic structures and their impact on Earth. Results : The results of the first six months of the EU H2020 project are presented here. These concern alternative coronal models, the application of adaptive mesh refinement techniques in the heliospheric part of EUHFORIA, alternative flux-rope CME models, evaluation of data-assimilation based on Karman filtering for the solar wind modelling, and a feasibility study of the integration of SEP models.
more »
« less
- Award ID(s):
- 1919310
- PAR ID:
- 10445616
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Journal of Space Weather and Space Climate
- Volume:
- 10
- ISSN:
- 2115-7251
- Page Range / eLocation ID:
- 57
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft. Aims. This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7−8, 2020, from both an observational and a modeling perspective. The aim is to provide a full description of those events, their mutual interaction, and their coupling with the ambient solar wind and the HCS. Methods. Data acquired by the MAG magnetometer, the Energetic Particle Detector suite, and the Radio and Plasma Waves instrument are used to provide information on the ICMEs’ magnetic topology configuration, their magnetic connectivity to the Sun, and insights into the heliospheric plasma environment where they travel, respectively. On the modeling side, the Heliospheric Upwind eXtrapolation model, the 3D COronal Rope Ejection technique, and the EUropean Heliospheric FORecasting Information Asset (EUHFORIA) tool are used to complement Solar Orbiter observations of the ambient solar wind and ICMEs, and to simulate the evolution and interaction of the ejecta in the inner heliosphere, respectively. Results. Both data analysis and numerical simulations indicate that the passage of two distinct, dynamically and magnetically interacting (via magnetic reconnection processes) ICMEs at Solar Orbiter is a possible scenario, supported by the numerous similarities between EUHFORIA time series at Solar Orbiter and Solar Orbiter data. Conclusions. The combination of in situ measurements and numerical simulations (together with remote sensing observations of the corona and inner heliosphere) will significantly lead to a deeper understanding of the physical processes occurring during the CME-CME interaction.more » « less
-
Context.Predicting geomagnetic events starts with an understanding of the Sun-Earth chain phenomena in which (interplanetary) coronal mass ejections (CMEs) play an important role in bringing about intense geomagnetic storms. It is not always straightforward to determine the solar source of an interplanetary coronal mass ejection (ICME) detected at 1 au. Aims.The aim of this study is to test by a magnetohydrodynamic (MHD) simulation the chain of a series of CME events detected from L1 back to the Sun in order to determine the relationship between remote and in situ CMEs. Methods.We analysed both remote-sensing observations and in situ measurements of a well-defined magnetic cloud (MC) detected at L1 occurring on 28 June 2013. The MHD modelling is provided by the 3D MHD European Heliospheric FORecasting Information Asset (EUHFORIA) simulation model. Results.After computing the background solar wind, we tested the trajectories of six CMEs occurring in a time window of five days before a well-defined MC at L1 that may act as the candidate of the MC. We modelled each CME using the cone model. The test involving all the CMEs indicated that the main driver of the well-defined, long-duration MC was a slow CME. For the corresponding MC, we retrieved the arrival time and the observed proton density. Conclusions.EUHFORIA confirms the results obtained in the George Mason data catalogue concerning this chain of events. However, their proposed solar source of the CME is disputable. The slow CME at the origin of the MC could have its solar source in a small, emerging region at the border of a filament channel at latitude and longitude equal to +14 degrees.more » « less
-
ABSTRACT Understanding and predicting the structure and evolution of coronal mass ejections (CMEs) in the heliosphere remains one of the most sought-after goals in heliophysics and space weather research. A powerful tool for improving current knowledge and capabilities consists of multispacecraft observations of the same event, which take place when two or more spacecraft fortuitously find themselves in the path of a single CME. Multiprobe events can not only supply useful data to evaluate the large-scale of CMEs from 1D in situ trajectories, but also provide additional constraints and validation opportunities for CME propagation models. In this work, we analyse and simulate the coronal and heliospheric evolution of a slow, streamer-blowout CME that erupted on 2021 September 23 and was encountered in situ by four spacecraft approximately equally distributed in heliocentric distance between 0.4 and 1 au. We employ the Open Solar Physics Rapid Ensemble Information modelling suite in ensemble mode to predict the CME arrival and structure in a hindcast fashion and to compute the ‘best-fitting’ solutions at the different spacecraft individually and together. We find that the spread in the predicted quantities increases with heliocentric distance, suggesting that there may be a maximum (angular and radial) separation between an inner and an outer probe beyond which estimates of the in situ magnetic field orientation (parametrized by flux rope model geometry) increasingly diverge. We discuss the importance of these exceptional observations and the results of our investigation in the context of advancing our understanding of CME structure and evolution as well as improving space weather forecasts.more » « less
-
Abstract Determining the relative contribution of solar flares versus coronal mass ejections in large solar energetic particle (SEP) events is a long-standing problem. Flare-accelerated particles may travel through complex magnetic fields in the eruption region and escape into interplanetary space, thereby contributing to large SEP events. The process by which flare accelerated particles are released into the heliosphere is poorly understood and yet is critical to advancing our understanding of SEPs. In this work, we address the release problem by solving the focused transport equation in the context of a 2.5D ARMS magnetohydrodynamic simulation of a breakout coronal mass ejection (CME)/flare event. We find that particles accelerated by flare reconnection can be released into interplanetary space through interchange reconnection between closed and open field lines. These particles can contribute directly to SEP events and may become an important seed population for further acceleration by CME-driven shocks. Additionally, we find that the energetic particle fluxes in the inner heliosphere remain elevated for an extended period, allowing them to contribute to SEP acceleration by subsequent CMEs. This study represents the first direct particle modeling of how flare-accelerated particles can contribute to major SEP events.more » « less
An official website of the United States government

