skip to main content


Search for: All records

Award ID contains: 1855054

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Environments associated with severe hailstorms, compared to those of tornadoes, are often less apparent to forecasters. Understanding has evolved considerably in recent years; namely, that weak low-level shear and sufficient convective available potential energy (CAPE) above the freezing level is most favorable for large hail. However, this understanding comes only from examining the mean characteristics of large hail environments. How much variety exists within the kinematic and thermodynamic environments of large hail? Is there a balance between shear and CAPE analogous to that noted with tornadoes? We address these questions to move toward a more complete conceptual model. In this study, we investigate the environments of 92 323 hail reports (both severe and nonsevere) using ERA5 modeled proximity soundings. By employing a self-organizing map algorithm and subsetting these environments by a multitude of characteristics, we find that the conditions leading to large hail are highly variable, but three primary patterns emerge. First, hail growth depends on a favorable balance of CAPE, wind shear, and relative humidity, such that accounting for entrainment is important in parameter-based hail prediction. Second, hail growth is thwarted by strong low-level storm-relative winds, unless CAPE below the hail growth zone is weak. Finally, the maximum hail size possible in a given environment may be predictable by the depth of buoyancy, rather than CAPE itself.

     
    more » « less
  2. Abstract

    Geostationary satellite imagers provide historical and near-real-time observations of cloud-top patterns that are commonly associated with severe convection. Environmental conditions favorable for severe weather are thought to be represented well by reanalyses. Predicting exactly where convection and costly storm hazards like hail will occur using models or satellite imagery alone, however, is extremely challenging. The multivariate combination of satellite-observed cloud patterns with reanalysis environmental parameters, linked to Next Generation Weather Radar (NEXRAD) estimated maximum expected size of hail (MESH) using a deep neural network (DNN), enables estimation of potentially severe hail likelihood for any observed storm cell. These estimates are made where satellites observe cold clouds, indicative of convection, located in favorable storm environments. We seek an approach that can be used to estimate climatological hailstorm frequency and risk throughout the historical satellite data record. Statistical distributions of convective parameters from satellite and reanalysis show separation between nonsevere and severe hailstorm classes for predictors that include overshooting cloud-top temperature and area characteristics, vertical wind shear, and convective inhibition. These complex, multivariate predictor relationships are exploited within a DNN to produce a likelihood estimate with a critical success index of 0.511 and Heidke skill score of 0.407, which is exceptional among analogous hail studies. Furthermore, applications of the DNN to case studies demonstrate good qualitative agreement between hail likelihood and MESH. These hail classifications are aggregated across an 11-yr Geostationary Operational Environmental Satellite (GOES) image database fromGOES-12/13to derive a hail frequency and severity climatology, which denotes the central Great Plains, the Midwest, and northwestern Mexico as being the most hail-prone regions within the domain studied.

     
    more » « less
  3. Hodographs are valuable sources of pattern recognition in severe convective storm forecasting. Certain shapes are known to discriminate between single cell, multicell, and supercell storm organization. Various derived quantities such as storm-relative helicity (SRH) have been found to predict tornado potential and intensity. Over the years, collective research has established a conceptual model for tornadic hodographs (large and “looping”, with high SRH). However, considerably less attention has been given to constructing a similar conceptual model for hodographs of severe hail. This study explores how hodograph shape may differentiate between the environments of severe hail and tornadoes. While supercells are routinely assumed to carry the potential to produce all hazards, this is not always the case, and we explore why. The Storm Prediction Center (SPC) storm mode dataset is used to assess the environments of 8,958 tornadoes and 7,256 severe hail reports, produced by right- and left-moving supercells. Composite hodographs and indices to quantify wind shear are assessed for each hazard, and clear differences are found between the kinematic environments of hail-producing and tornadic supercells. The sensitivity of the hodograph to common thermodynamic variables was also examined, with buoyancy and moisture found to influence the shape associated with the hazards. The results suggest that differentiating between tornadic and hail-producing storms may be possible using properties of the hodograph alone. While anticipating hail size does not appear possible using only the hodograph, anticipating tornado intensity appears readily so. When coupled with buoyancy profiles, the hodograph may assist in differentiating between both hail size and tornado intensity. 
    more » « less
  4. null (Ed.)
    Abstract In this study we investigate convective environments and their corresponding climatological features over Europe and the United States. For this purpose, National Lightning Detection Network (NLDN) and Arrival Time Difference long-range lightning detection network (ATDnet) data, ERA5 hybrid-sigma levels, and severe weather reports from the European Severe Weather Database (ESWD) and Storm Prediction Center (SPC) Storm Data were combined on a common grid of 0.25° and 1-h steps over the period 1979–2018. The severity of convective hazards increases with increasing instability and wind shear (WMAXSHEAR), but climatological aspects of these features differ over both domains. Environments over the United States are characterized by higher moisture, CAPE, CIN, wind shear, and midtropospheric lapse rates. Conversely, 0–3-km CAPE and low-level lapse rates are higher over Europe. From the climatological perspective severe thunderstorm environments (hours) are around 3–4 times more frequent over the United States with peaks across the Great Plains, Midwest, and Southeast. Over Europe severe environments are the most common over the south with local maxima in northern Italy. Despite having lower CAPE (tail distribution of 3000–4000 J kg −1 compared to 6000–8000 J kg −1 over the United States), thunderstorms over Europe have a higher probability for convective initiation given a favorable environment. Conversely, the lowest probability for initiation is observed over the Great Plains, but, once a thunderstorm develops, the probability that it will become severe is much higher compared to Europe. Prime conditions for severe thunderstorms over the United States are between April and June, typically from 1200 to 2200 central standard time (CST), while across Europe favorable environments are observed from June to August, usually between 1400 and 2100 UTC. 
    more » « less
  5. null (Ed.)
    Globally relevant and locally devastating, hailstorms produce significant societal impacts; despite this, our understanding of hailstorms and our ability to predict them is still limited. 
    more » « less