skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding how variable thermal environments affect the molecular mechanisms underlying temperature-sensitive phenotypes: lessons from sex determination
ABSTRACT The thermal environment that organisms experience can affect many aspects of their phenotype. As global temperatures become more unpredictable, it is imperative that we understand the molecular mechanisms by which organisms respond to variable, and often transient, thermal environments. Beyond deciphering the mechanisms through which organisms respond to temperature, we must also appreciate the underlying variation in temperature-dependent processes, as this variation is essential for understanding the potential to adapt to changing climates. In this Commentary, we use temperature-dependent sex determination as an example to explore the mechanistic processes underlying the development of temperature-sensitive phenotypes. We synthesize the current literature on how variable thermal conditions affect these processes and address factors that may limit or allow organisms to respond to variable environments. From these examples, we posit a framework for how the field might move forward in a more systematic way to address three key questions: (1) which genes directly respond to temperature-sensitive changes in protein function and which genes are downstream, indirect responders?; (2) how long does it take different proteins and genes to respond to temperature?; and (3) are the experimental temperature manipulations relevant to the climate the organism experiences or to predicted climate change scenarios? This approach combines mechanistic questions (questions 1 and 2) with ecologically relevant conditions (question 3), allowing us to explore how organisms respond to transient thermal environments and, thus, cope with climate change.  more » « less
Award ID(s):
2114111
PAR ID:
10342229
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
225
Issue:
11
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Synopsis An organism’s ability to integrate transient environmental cues experienced during development into molecular and physiological responses forms the basis for adaptive shifts in phenotypic trajectories. During temperature-dependent sex determination (TSD), thermal cues during discrete periods in development coordinate molecular changes that ultimately dictate sexual fate and contribute to patterns of inter- and intra-sexual variation. How these mechanisms interface with dynamic thermal environments in nature remain largely unknown. By deploying thermal loggers in wild nests of the American alligator (Alligator mississippiensis) over two consecutive breeding seasons, we observed that 80% of nests exhibit both male- and female-promoting thermal cues during the thermosensitive period, and of these nests, all exhibited both male- and female-promoting temperatures within the span of a single day. These observations raise a critical question—how are opposing environmental cues integrated into sexually dimorphic transcriptional programs across short temporal scales? To address this question, alligator embryos were exposed to fluctuating temperatures based on nest thermal profiles and sampled over the course of a daily thermal fluctuation. We examined the expression dynamics of upstream genes in the temperature-sensing pathway and find that post-transcriptional alternative splicing and transcript abundance of epigenetic modifier genes JARID2 and KDM6B respond rapidly to thermal fluctuations while transcriptional changes of downstream effector genes, SOX9 and DMRT1, occur on a delayed timescale. Our findings reveal how the basic mechanisms of TSD operate in an ecologically relevant context. We present a hypothetical hierarchical model based on our findings as well as previous studies, in which temperature-sensitive alternative splicing incrementally influences the epigenetic landscape to affect the transcriptional activity of key sex-determining genes. 
    more » « less
  2. Moura, Mario R. (Ed.)
    Projecting ecological and evolutionary responses to variable and changing environments is central to anticipating and managing impacts to biodiversity and ecosystems. Current modeling approaches are largely phenomenological and often fail to accurately project responses due to numerous biological processes at multiple levels of biological organization responding to environmental variation at varied spatial and temporal scales. Limited mechanistic understanding of organismal responses to environmental variability and extremes also restricts predictive capacity. We outline a strategy for identifying and modeling the key organismal mechanisms across levels of biological organization that mediate ecological and evolutionary responses to environmental variation. A central component of this strategy is quantifying timescales and magnitudes of climatic variability and how organisms experience them. We highlight recent empirical research that builds this information and suggest how to design future experiments that can produce more generalizable principles. We discuss how to create biologically informed projections in a feasible way by combining statistical and mechanistic approaches. Predictions will inform both fundamental and practical questions at the interface of ecology, evolution, and Earth science such as how organisms experience, adapt to, and respond to environmental variation at multiple hierarchical spatial and temporal scales. 
    more » « less
  3. Projecting ecological and evolutionary responses to variable and changing environments is central to anticipating and managing impacts to biodiversity and ecosystems. Current model- ing approaches are largely phenomenological and often fail to accurately project responses due to numerous biological processes at multiple levels of biological organization responding to environmental variation at varied spatial and temporal scales. Limited mechanistic under- standing of organismal responses to environmental variability and extremes also restricts predictive capacity. We outline a strategy for identifying and modeling the key organismal mechanisms across levels of biological organization that mediate ecological and evolutionary responses to environmental variation. A central component of this strategy is quantifying timescales and magnitudes of climatic variability and how organisms experience them. We highlight recent empirical research that builds this information and suggest how to design future experiments that can produce more generalizable principles. We discuss how to create biologically informed projections in a feasible way by combining statistical and mechanistic approaches. Predictions will inform both fundamental and practical questions at the interface of ecology, evolution, and Earth science such as how organisms experience, adapt to, and respond to environmental variation at multiple hierarchical spatial and temporal scales. 
    more » « less
  4. Thermal variability is a key driver of ecological processes, affecting organisms and populations across multiple temporal scales. Despite the ubiquity of variation, biologists lack a quantitative synthesis of the observed ecological consequences of thermal variability across a wide range of taxa, phenotypic traits and experimental designs. Here, we conduct a meta-analysis to investigate how properties of organisms, their experienced thermal regime and whether thermal variability is experienced in either the past (prior to an assay) or present (during the assay) affect performance relative to the performance of organisms experiencing constant thermal environments. Our results—which draw upon 1712 effect sizes from 75 studies—indicate that the effects of thermal variability are not unidirectional and become more negative as mean temperature and fluctuation range increase. Exposure to variation in the past decreases performance to a greater extent than variation experienced in the present and increases the costs to performance more than diminishing benefits across a broad set of empirical studies. Further, we identify life-history attributes that predictably modify the ecological response to variation. Our findings demonstrate that effects of thermal variability on performance are context-dependent, yet negative outcomes may be heightened in warmer, more variable climates. 
    more » « less
  5. null (Ed.)
    The environment experienced during embryonic development is a rich source of phenotypic variation, as environmental signals have the potential to both inform adaptive plastic responses and disrupt normal developmental programs. Environment-by-embryo interactions are particularly consequential for species with temperature-dependent sex determination, a mode of sex determination common in non-avian reptiles and fish, in which thermal cues during a discrete period of development drive the formation of either an ovary or a testis. Here we examine the impact of thermal variation during incubation in combination with developmental exposure to a common endocrine-disrupting contaminant on fitness-related hatchling traits in the American alligator (Alligator mississippiensis), a species with temperature-dependent sex determination. Using a factorial design, we exposed field-collected eggs to five thermal profiles (three constant temperatures, two fluctuating temperatures) and two environmentally relevant doses of the pesticide metabolite dichlorodiphenyldichloroethylene; and we quantified incubation duration, sex ratios, hatchling morphometric traits, and growth (9–10 days post-hatch). Whereas dichlorodiphenyldichloroethylene exposure did not generally affect hatchling traits, constant and fluctuating temperatures produced diverse phenotypic effects. Thermal fluctuations led to subtle changes in incubation duration and produced shorter hatchlings with smaller heads when compared to the constant temperature control. Warmer, male-promoting incubation temperatures resulted in larger hatchlings with more residual yolk reserves when compared to cooler, female-promoting temperatures. Together, these findings advance our understanding of how complex environmental factors interact with developing organisms to generate phenotypic variation and raise questions regarding the mechanisms connecting variable thermal conditions to responses in hatchling traits and their evolutionary implications for temperature-dependent sex determination. 
    more » « less