skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recognition of Symmetry as a Powerful Tool in Natural Product Synthesis
The design of concise and efficient synthetic strategies to access naturally occurring, pharmaceutically active complex molecules is of utmost importance in current chemistry. It not only enables rapid access to these molecules and their analogues but also provides sufficient quantities for their biological evaluation. Identification of any symmetric or pseudosymmetric synthetic intermediates upon retrosynthetic bond disconnection of the target molecule holds the promise to significantly streamline the route towards the compound of interest. This review will highlight recent examples of successful natural product syntheses reported within the past five years that benefited from the recognition of symmetry elements during the retrosynthetic design.  more » « less
Award ID(s):
1654223
PAR ID:
10342409
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Synthesis
ISSN:
0039-7881
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The design of synthetic routes by retrosynthetic logic is decisively influenced by the transformations available. Transition‐metal‐catalyzed C−H activation has emerged as a powerful strategy for C−C bond formation, with myriad methods developed for diverse substrates and coupling partners. However, its uptake in total synthesis has been tepid, partially due to their apparent synthetic intractability, as well as a lack of comprehensive guidelines for implementation. This Review addresses these issues and offers a guide to identify retrosynthetic opportunities to generate C−C bonds by C−H activation processes. By comparing total syntheses accomplished using traditional approaches and recent C−H activation methods, this Review demonstrates how C−H activation enabled C−C bond construction has led to more efficient retrosynthetic strategies, as well as the execution of previously unattainable tactical maneuvers. Finally, shortcomings of existing processes are highlighted; this Review illustrates how some highlighted total syntheses can be further economized by adopting next‐generation ligand‐enabled approaches. 
    more » « less
  2. Recent developments in the isotopic labeling of heteroarenes may prove to be useful in the realms of biomedical science, materials chemistry, and fundamental organic chemistry. The use of the age-old Zincke reaction, or tactical variants thereof, has become particularly utilitarian in effecting single-atom nitrogen replacement in various azines to generate their desired isotopologues. This chemistry can be synthetically leveraged at an early stage for diversity-oriented heterocyclic labeling of pharmaceuticals and/or natural products. Additionally, given the prevalence of saturated azacycles in biologically relevant molecules, access to these isotopologues becomes relevant through dearomative retrosynthetic analysis from the corresponding 15N-labeled heteroarenes. 
    more » « less
  3. The importance and prevalance of O-, N-, and S-atom containing saturated four-membered ring motifs in biologically active molecules and potential therapeutics continues to drive efforts in their efficient synthetic preparation. In this review, general and recent strategies for the synthesis of these heterocycles are presented. Due to the limited potential bond disconnections, retrosynthetic strategies are broadly limited to cyclizations and cycloadditions. Nonetheless, diverse approaches for accessing cyclization precursors have been developed, ranging from nucleophilic substitution to C–H functionalization. Innovative methods for substrate activation have been developed for cycloadditions under photochemical and thermal conditions. Advances in accessing oxetanes, azetidines, and thietanes remain active areas of research with continued breakthroughs anticipated to enable future applications. 
    more » « less
  4. Efficient chemical synthesis is critical to satisfying future demands for medicines, materials, and agrochemicals. Retrosynthetic analysis of modestly complex molecules has been automated over the course of decades, but the combinatorial explosion of route possibilities has challenged computer hardware and software until only recently. Here, we explore a computational strategy that merges computer-aided synthesis planning with molecular graph editing to minimize the number of synthetic steps required to produce alkaloids. Our study culminated in an enantioselective three-step synthesis of (–)-stemoamide by leveraging high-impact key steps, which could be identified in computer-generated retrosynthesis plans using graph edit distances. 
    more » « less
  5. This article describes the first enantioselective synthesis of the Tasmanian marine alkaloid (+)-cylindricine B. The concise construction of the compound hinged on dearomative retrosynthetic logic combined with a tactical advance in the generation of congested, cyclic, alpha-tertiary amine centers. The scope of this key coupling reaction was explored in addition to providing a synthetic application for Cu-catalyzed enantioselective dearomatization of N-acyl-pyridiniums. The synthesis proceeds in five or six steps from commercially available starting materials. 
    more » « less