Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A 14‐step synthesis of (+)‐cochlearol B is reported. This renoprotective meroterpenoid features a unique core structure containing a densely substituted cyclobutane ring with three stereocenters. Our strategy employed an organocatalytic Kabbe condensation in route to the key chromenyl triflate. A subsequent Catellani reaction incorporated the remaining carbon atoms featured in the skeleton of cochlearol B. An ensuing visible‐light‐mediated [2+2] photocycloaddition closed the cyclobutane and formed the central bicyclo[3.2.0]heptane core. Notably, careful design and tuning of the Catellani and photocycloaddition reactions proved crucial in overcoming undesired reactivity, including cyclopropanation reactions and [4+2] cycloadditions.more » « less
-
Since the first reports of their isolation, the meroterpenoids cochlearol A and B have attracted interest from the synthetic community for their unique structural features. This review describes the attempted and successful total syntheses of these natural products and provides a summary of the strategies developed in the years since their isolation.more » « less
-
Enantiodivergence is an important concept in asymmetric catalysis that enables access to both enantiomers of a product relying on the same chiral source as reagent. This strategy is particularly appealing as an alternate approach when only one enantiomer of the required chiral ligand is readily accessible but both enantiomers of the product are desired. Despite the potential significance, general catalytic methods to effectively reverse enantioselectivity by changing an achiral reaction parameter remain underdeveloped. Herein we report our studies focused on elucidating the origin of metal-controlled enantioselectivity reversal in Lewis acid-catalysed Michael additions. Rigorous experimental and computational investigations reveal that specific Lewis and Brønsted acid interactions between the substrate and ligand change depending on the ionic radius of the metal catalyst, and are key factors responsible for the observed enantiodivergence. This holds potential to further our understanding of and facilitate the design of future enantiodivergent transformations.more » « less
-
The design of concise and efficient synthetic strategies to access naturally occurring, pharmaceutically active complex molecules is of utmost importance in current chemistry. It not only enables rapid access to these molecules and their analogues but also provides sufficient quantities for their biological evaluation. Identification of any symmetric or pseudosymmetric synthetic intermediates upon retrosynthetic bond disconnection of the target molecule holds the promise to significantly streamline the route towards the compound of interest. This review will highlight recent examples of successful natural product syntheses reported within the past five years that benefited from the recognition of symmetry elements during the retrosynthetic design.more » « less
-
A synthetic method for the efficient construction of β-hydroxylactones and lactams bearing α-quaternary carbon centers is described. This transformation relies on an electronically differentiated Lewis base catalyst, which is uniquely capable of promoting a reductive aldol reaction of α,α-disubstituted and α,α,β-trisubstituted enones. This approach provides a valuable synthetic alternative for carbon–carbon bond formation in complex molecular settings due to its orthogonal reactivity compared to that of traditional aldol reactions. Based on this method described herein, lactones, lactams, and morpholine amides bearing α-quaternary carbon centers are accessible in yields up to 85% and 50:1 dr.more » « less
An official website of the United States government
