skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Heterocyclic Surgery for Isotopic Labeling
Recent developments in the isotopic labeling of heteroarenes may prove to be useful in the realms of biomedical science, materials chemistry, and fundamental organic chemistry. The use of the age-old Zincke reaction, or tactical variants thereof, has become particularly utilitarian in effecting single-atom nitrogen replacement in various azines to generate their desired isotopologues. This chemistry can be synthetically leveraged at an early stage for diversity-oriented heterocyclic labeling of pharmaceuticals and/or natural products. Additionally, given the prevalence of saturated azacycles in biologically relevant molecules, access to these isotopologues becomes relevant through dearomative retrosynthetic analysis from the corresponding 15N-labeled heteroarenes.  more » « less
Award ID(s):
2154662
PAR ID:
10552030
Author(s) / Creator(s):
Publisher / Repository:
Thieme
Date Published:
Journal Name:
Synlett
Volume:
2024
Issue:
35
ISSN:
0936-5214
Page Range / eLocation ID:
A–F
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The activation of CH bonds in arenes and heteroarenes has attracted considerable attention in recent years. Examples of the activation of two or more CH bonds in arenes or heteroarenes are rare. In recent studies it has been found that certain polynuclear metal carbonyl complexes, such as Re 2 (CO) 8 (μ-C 6 H 5 )(μ-H), 1 and Os 3 (CO) 10 (NCMe) 2 , can react two or more times with selected arenes and heteroarenes through a series of CH activations to yield interesting new multiply-CH activated arenes and heteroarenes and can lead to the opening of ring systems in the case of heteroarenes. A summary of these novel reactions and new products is presented in this Frontier article. 
    more » « less
  2. null (Ed.)
    The combination of 13C-isotopic labeling and mass spectrometry imaging (MSI) offers an approach to analyze metabolic flux in situ. However, combining isotopic labeling and MSI presents technical challenges ranging from sample preparation, label incorporation, data collection, and analysis. Isotopic labeling and MSI individually create large, complex data sets, and this is compounded when both methods are combined. Therefore, analyzing isotopically labeled MSI data requires streamlined procedures to support biologically meaningful interpretations. Using currently available software and techniques, here we describe a workflow to analyze 13C-labeled isotopologues of the membrane lipid and storage oil lipid intermediate―phosphatidylcholine (PC). Our results with embryos of the oilseed crops, Camelina sativa and Thlaspi arvense (pennycress), demonstrated greater 13C-isotopic labeling in the cotyledons of developing embryos compared with the embryonic axis. Greater isotopic enrichment in PC molecular species with more saturated and longer chain fatty acids suggest different flux patterns related to fatty acid desaturation and elongation pathways. The ability to evaluate MSI data of isotopically labeled plant embryos will facilitate the potential to investigate spatial aspects of metabolic flux in situ. 
    more » « less
  3. Abstract Stereoselective Zweifel olefination using boronate complexes carrying two different reactive π‐systems was achieved to synthesize vinyl heteroarenes and conjugated 1,3‐dienes in good yield and up to 100 % stereoselectivity, which remains unexplored until now. Most importantly, we report the unprecedented formation ofEvs.Z‐vinyl heteroarenes for different heteroarenes under identical conditions. Density functional theory (DFT) investigations unveil the mechanistic dichotomy between olefin and heteroarene activation followed by 1,2‐migration, leading toEorZ‐vinyl heteroarenes respectively. We also report a previously unknown reversal of stereoselectivity by using 2,3‐Dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ) as an electrophile. The Zweifel olefination using a boronate complex that carries two different olefins was previously unexplored due to significant challenges associated with the site‐selective activation of olefins. We have solved this problem and reported the site‐selective activation of olefins for the stereoselective synthesis of 1,3‐dienes. 
    more » « less
  4. The gas-phase rotational spectrum from 8 to 750 GHz and the high-resolution infrared (IR) spectrum of pyridazine (o-C4H4N2) have been analyzed for the ground and four lowest-energy vibrationally excited states. A combined global fit of the rotational and IR data has been obtained using a sextic, centrifugally distorted-rotor Hamiltonian with Coriolis coupling between appropriate states. Coriolis coupling has been addressed in the two lowest-energy coupled dyads (ν16, ν13 and ν24, ν9). Utilizing the Coriolis coupling between the vibrational states of each dyad and the analysis of the IR spectrum for ν16 and ν9, we have determined precise band origins for each of these fundamental states: ν16 (B1) = 361.213 292 7 (17) cm−1, ν13 (A2) = 361.284 082 4 (17) cm−1, ν24 (B2) = 618.969 096 (26) cm−1, and ν9 (A1) = 664.723 378 4 (27) cm−1. Notably, the energy separation in the ν16-ν13 Coriolis-coupled dyad is one of the smallest spectroscopically measured energy separations between vibrational states: 2122.222 (72) MHz or 0.070 789 7 (24) cm−1. Despite ν13 being IR inactive and ν24 having an impractically low-intensity IR intensity, the band origins of all four vibrational states were measured, showcasing the power of combining the data provided by millimeter-wave and high-resolution IR spectra. Additionally, the spectra of pyridazine-dx isotopologues generated for a previous semi-experimental equilibrium structure (reSE) determination allowed us to analyze the two lowest-energy vibrational states of pyridazine for all nine pyridazine-dx isotopologues. Coriolis-coupling terms have been measured for analogous vibrational states across seven isotopologues, both enabling their comparison and providing a new benchmark for computational chemistry. 
    more » « less
  5. Abstract Most stars are born in stellar clusters, and their protoplanetary disks, which are the birthplaces of planets, can, therefore, be affected by the radiation of nearby massive stars. However, little is known about the chemistry of externally irradiated disks, including whether or not their properties are similar to the so-far better-studied isolated disks. Motivated by this question, we present ALMA Band 6 observations of two irradiated Class II protoplanetary disks in the outskirts of the Orion Nebula Cluster to explore the chemical composition of disks exposed to (external) far-ultraviolet (FUV) radiation fields: the 216-0939 disk and the binary system 253-1536A/B, which are exposed to radiation fields of 102–103times the average interstellar radiation field. We detect lines from CO isotopologues, HCN, H2CO, and C2H toward both protoplanetary disks. Based on the observed disk-integrated line fluxes and flux ratios, we do not find significant differences between isolated and irradiated disks. The observed differences seem to be more closely related to the different stellar masses than to the external radiation field. This suggests that these disks are far enough away from the massive Trapezium stars, that their chemistry is no longer affected by external FUV radiation. Additional observations toward lower-mass disks and disks closer to the massive Trapezium stars are required to elucidate the level of external radiation required to make an impact on the chemistry of planet formation in different kinds of disks. 
    more » « less