skip to main content


Title: The SEDIGISM survey: The influence of spiral arms on the molecular gas distribution of the inner Milky Way
The morphology of the Milky Way is still a matter of debate. In order to shed light on uncertainties surrounding the structure of the Galaxy, in this paper, we study the imprint of spiral arms on the distribution and properties of its molecular gas. To do so, we take full advantage of the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic Interstellar Medium) survey that observed a large area of the inner Galaxy in the 13 CO (2–1) line at an angular resolution of 28′′. We analyse the influences of the spiral arms by considering the features of the molecular gas emission as a whole across the longitude–velocity map built from the full survey. Additionally, we examine the properties of the molecular clouds in the spiral arms compared to the properties of their counterparts in the inter-arm regions. Through flux and luminosity probability distribution functions, we find that the molecular gas emission associated with the spiral arms does not differ significantly from the emission between the arms. On average, spiral arms show masses per unit length of ~10 5 –10 6 M ⊙ kpc −1 . This is similar to values inferred from data sets in which emission distributions were segmented into molecular clouds. By examining the cloud distribution across the Galactic plane, we infer that the molecular mass in the spiral arms is a factor of 1.5 higher than that of the inter-arm medium, similar to what is found for other spiral galaxies in the local Universe. We observe that only the distributions of cloud mass surface densities and aspect ratio in the spiral arms show significant differences compared to those of the inter-arm medium; other observed differences appear instead to be driven by a distance bias. By comparing our results with simulations and observations of nearby galaxies, we conclude that the measured quantities would classify the Milky Way as a flocculent spiral galaxy, rather than as a grand-design one.  more » « less
Award ID(s):
2008101
NSF-PAR ID:
10342423
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
658
ISSN:
0004-6361
Page Range / eLocation ID:
A54
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The SEDIGISM (Structure, Excitation and Dynamics of the Inner Galactic Interstellar Medium) survey used the APEX telescope to map 84 deg2 of the Galactic plane between ℓ = −60° and +31° in several molecular transitions, including 13CO (2 – 1) and C18O (2 – 1), thus probing the moderately dense (∼103 cm−3) component of the interstellar medium. With an angular resolution of 30 arcsec and a typical 1σ sensitivity of 0.8–1.0 K at 0.25 km s−1 velocity resolution, it gives access to a wide range of structures, from individual star-forming clumps to giant molecular clouds and complexes. The coverage includes a good fraction of the first and fourth Galactic quadrants, allowing us to constrain the large-scale distribution of cold molecular gas in the inner Galaxy. In this paper, we provide an updated overview of the full survey and the data reduction procedures used. We also assess the quality of these data and describe the data products that are being made publicly available as part of this First Data Release (DR1). We present integrated maps and position–velocity maps of the molecular gas and use these to investigate the correlation between the molecular gas and the large-scale structural features of the Milky Way such as the spiral arms, Galactic bar and Galactic Centre. We find that approximately 60 per cent of the molecular gas is associated with the spiral arms and these appear as strong intensity peaks in the derived Galactocentric distribution. We also find strong peaks in intensity at specific longitudes that correspond to the Galactic Centre and well-known star-forming complexes, revealing that the 13CO emission is concentrated in a small number of complexes rather than evenly distributed along spiral arms.

     
    more » « less
  2. HII regions are the archetypical tracers of high-mass star formation. Because of their high luminosities, they can be seen across the entire Galactic disk from mid-infrared to radio wavelengths. A uniformly sensitive survey of Galactic HII regions across the disk would allow us to constrain the properties of Galactic structure and star formation. We have cataloged over 8000 HII regions and candidates in the WISE Catalog of Galactic HII Regions (astro.phys.wvu.edu/wise), but only 2000 of these are confirmed HII regions. The work is ongoing, but from our survey completeness limits and population synthesis modeling, we predict there are nearly 10,000 HII regions in the Milky Way created by a central star of type B2 or earlier. A population of especially interesting HII regions trace the Outer Scutum-Centaurus spiral arm (OSC), the most distant molecular spiral arm in the Milky Way. These regions represent star formation at low densities and low metallicities, similar to the conditions in galaxies like the Large Magellanic Cloud or a much younger Milky Way. To date, we have detected high-mass star formation at 17 locations in the OSC, with the most distant source at 23.5 kpc from the Sun and 17 kpc from the Galactic Center. They have molecular cloud masses up to 105 Msol and central stellar types as early as O4. By comparing molecular and stellar masses, we can begin to put constraints on the star formation efficiency of these distant outer Galaxy sources. We map the ionized gas using the Very Large Array at X-band in the D-configuration. We map the 13CO, HCN, and HCO+ molecular gas emission using the Argus array on the Green Bank Telescope, producing individual 5 arcmin maps with 8 arcsec resolution and 0.5 K sensitivity in 20 minutes. 
    more » « less
  3. Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) imaging of molecular gas across the full star-forming disk of the barred spiral galaxy M83 in CO( J = 1–0). We jointly deconvolve the data from ALMA’s 12 m, 7 m, and Total Power arrays using the MIRIAD package. The data have a mass sensitivity and resolution of 10 4 M ⊙ (3 σ ) and 40 pc—sufficient to detect and resolve a typical molecular cloud in the Milky Way with a mass and diameter of 4 × 10 5 M ⊙ and 40 pc, respectively. The full disk coverage shows that the characteristics of molecular gas change radially from the center to outer disk, with the locally measured brightness temperature, velocity dispersion, and integrated intensity (surface density) decreasing outward. The molecular gas distribution shows coherent large-scale structures in the inner part, including the central concentration, offset ridges along the bar, and prominent molecular spiral arms. However, while the arms are still present in the outer disk, they appear less spatially coherent, and even flocculent. Massive filamentary gas concentrations are abundant even in the interarm regions. Building up these structures in the interarm regions would require a very long time (≳100 Myr). Instead, they must have formed within stellar spiral arms and been released into the interarm regions. For such structures to survive through the dynamical processes, the lifetimes of these structures and their constituent molecules and molecular clouds must be long (≳100 Myr). These interarm structures host little or no star formation traced by H α . The new map also shows extended CO emission, which likely represents an ensemble of unresolved molecular clouds. 
    more » « less
  4. The Outer Scutum-Centaurus spiral arm (OSC) is the outermost molecular spiral arm in the Galaxy and contains the most distant known high-mass star formation regions in the Milky Way. HII regions are the archetypical tracers of high-mass star formation, and because of their high luminosities, they can be seen across the entire Galactic disk from mid-infrared to radio wavelengths. We have detected HII regions at nearly 20 locations in the OSC, as far as 23.5 kpc from the Sun and 15 kpc from the Galactic center on the far side of the Galactic center. The far outer Galaxy has lower metallicity than the more inner regions of the Milky Way, with 12 + log(O/H) = 8.29 at the OSC versus 8.9 and 8.54 at the Galactic Center and the Solar neighborhood, respectively. Coupled with lower gas densities, star formation in the OSC could be similar to that of a much younger Milky Way or galaxies like the Large Magellanic Cloud. We find large reservoirs of diffuse and dense molecular gas (13CO, HCO+, HCN) in the OSC with the Argus array on the Green Bank Telescope (up to 105 Solar masses). We are also able to estimate the central ionizing sources from Very Large Array continuum observations, showing central stellar types as early as O4. Combined, these observations allow us to study chemical abundances and star formation efficiencies on the outer edge of the Milky Way, putting constraints on star formation properties towards the edge of the Galaxy’s molecular disk. 
    more » « less
  5. ABSTRACT

    Young stellar objects (YSOs) are the gold standard for tracing star formation in galaxies but have been unobservable beyond the Milky Way and Magellanic Clouds. But that all changed when the JWST was launched, which we use to identify YSOs in the Local Group galaxy M33, marking the first time that individual YSOs have been identified at these large distances. We present Mid-Infrared Instrument (MIRI) imaging mosaics at 5.6 and 21 $\mu$m that cover a significant portion of one of M33’s spiral arms that has existing panchromatic imaging from the Hubble Space Telescope and deep Atacama Large Millimeter/submillimeter Array CO measurements. Using these MIRI and Hubble Space Telescope images, we identify point sources using the new dolphot MIRI module. We identify 793 candidate YSOs from cuts based on colour, proximity to giant molecular clouds (GMCs), and visual inspection. Similar to Milky Way GMCs, we find that higher mass GMCs contain more YSOs and YSO emission, which further show YSOs identify star formation better than most tracers that cannot capture this relationship at cloud scales. We find evidence of enhanced star formation efficiency in the southern spiral arm by comparing the YSOs to the molecular gas mass.

     
    more » « less