skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: The centres of M83 and the Milky Way: opposite extremes of a common star formation cycle
ABSTRACT In the centres of the Milky Way and M83, the global environmental properties thought to control star formation are very similar. However, M83’s nuclear star formation rate (SFR), as estimated by synchrotron and H α emission, is an order of magnitude higher than the Milky Way’s. To understand the origin of this difference we use ALMA observations of HCN (1 − 0) and HCO+ (1 − 0) to trace the dense gas at the size scale of individual molecular clouds (0.54 arcsec, 12 pc) in the inner ∼500 pc of M83, and compare this to gas clouds at similar resolution and galactocentric radius in the Milky Way. We find that both the overall gas distribution and the properties of individual clouds are very similar in the two galaxies, and that a common mechanism may be responsible for instigating star formation in both circumnuclear rings. Given the considerable similarity in gas properties, the most likely explanation for the order of magnitude difference in SFR is time variability, with the Central Molecular Zone (CMZ) currently being at a more quiescent phase of its star formation cycle. We show M83’s SFR must have been an order of magnitude higher 5–7 Myr ago. M83’s ‘starburst’ phase was highly localized, both spatially and temporally, greatly increasing the feedback efficiency and ability to drive galactic-scale outflows. This highly dynamic nature of star formation and feedback cycles in galaxy centres means (i) modelling and interpreting observations must avoid averaging over large spatial areas or time-scales, and (ii) understanding the multiscale processes controlling these cycles requires comparing snapshots of a statistical sample of galaxies in different evolutionary stages.  more » « less
Award ID(s):
2008101
NSF-PAR ID:
10342437
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
505
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
4310 to 4337
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) imaging of molecular gas across the full star-forming disk of the barred spiral galaxy M83 in CO( J = 1–0). We jointly deconvolve the data from ALMA’s 12 m, 7 m, and Total Power arrays using the MIRIAD package. The data have a mass sensitivity and resolution of 10 4 M ⊙ (3 σ ) and 40 pc—sufficient to detect and resolve a typical molecular cloud in the Milky Way with a mass and diameter of 4 × 10 5 M ⊙ and 40 pc, respectively. The full disk coverage shows that the characteristics of molecular gas change radially from the center to outer disk, with the locally measured brightness temperature, velocity dispersion, and integrated intensity (surface density) decreasing outward. The molecular gas distribution shows coherent large-scale structures in the inner part, including the central concentration, offset ridges along the bar, and prominent molecular spiral arms. However, while the arms are still present in the outer disk, they appear less spatially coherent, and even flocculent. Massive filamentary gas concentrations are abundant even in the interarm regions. Building up these structures in the interarm regions would require a very long time (≳100 Myr). Instead, they must have formed within stellar spiral arms and been released into the interarm regions. For such structures to survive through the dynamical processes, the lifetimes of these structures and their constituent molecules and molecular clouds must be long (≳100 Myr). These interarm structures host little or no star formation traced by H α . The new map also shows extended CO emission, which likely represents an ensemble of unresolved molecular clouds. 
    more » « less
  2. Abstract

    We measure the CO-to-H2conversion factor (αCO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofαCOfor CO (2–1) and (1–0), respectively. The mean values forαCO (2–1)andαCO (1–0)are9.35.4+4.6and4.22.0+1.9Mpc2(Kkms1)1, respectively. The CO-intensity-weighted mean is 5.69 forαCO (2–1)and 3.33 forαCO (1–0). We examine howαCOscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength (U¯). Among them,U¯, ΣSFR, and the integrated CO intensity (WCO) have the strongest anticorrelation with spatially resolvedαCO. We provide linear regression results toαCOfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenαCOandWCO, metallicity,U¯, and ΣSFR. We also find thatαCOin each galaxy decreases with the stellar mass surface density (Σ) in high-surface-density regions (Σ≥ 100Mpc−2), following the power-law relationsαCO(21)Σ0.5andαCO(10)Σ0.2. The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inαCOwith increasing Σas a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inαCO. The decrease inαCOat high Σis important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors.

     
    more » « less
  3. ABSTRACT

    We use new HCN(1–0) data from the ACA Large-sample Mapping Of Nearby galaxies in Dense gas (ALMOND) survey to trace the kpc-scale molecular gas density structure and CO(2–1) data from the Physics at High Angular resolution in Nearby GalaxieS–Atacama Large Millimeter/submillimeter Array (PHANGS–ALMA) to trace the bulk molecular gas across 25 nearby star-forming galaxies. At 2.1 kpc scale, we measure the density-sensitive HCN/CO line ratio and the star formation rate (SFR)/HCN ratio to trace the star formation efficiency in the denser molecular medium. At 150 pc scale, we measure structural and dynamical properties of the molecular gas via CO(2–1) line emission, which is linked to the lower resolution data using an intensity-weighted averaging method. We find positive correlations (negative) of HCN/CO (SFR/HCN) with the surface density, the velocity dispersion, and the internal turbulent pressure of the molecular gas. These observed correlations agree with expected trends from turbulent models of star formation, which consider a single free-fall time gravitational collapse. Our results show that the kpc-scale HCN/CO line ratio is a powerful tool to trace the 150 pc scale average density distribution of the molecular clouds. Lastly, we find systematic variations of the SFR/HCN ratio with cloud-scale molecular gas properties, which are incompatible with a universal star formation efficiency. Overall, these findings show that mean molecular gas density, molecular cloud properties, and star formation are closely linked in a coherent way, and observations of density-sensitive molecular gas tracers are a useful tool to analyse these variations, linking molecular gas physics to stellar output across galaxy discs.

     
    more » « less
  4. ABSTRACT We study the spatially resolved (sub-kpc) gas velocity dispersion (σ)–star formation rate (SFR) relation in the FIRE-2 (Feedback in Realistic Environments) cosmological simulations. We specifically focus on Milky Way-mass disc galaxies at late times (z ≈ 0). In agreement with observations, we find a relatively flat relationship, with σ ≈ 15–30 km s−1 in neutral gas across 3 dex in SFRs. We show that higher dense gas fractions (ratios of dense gas to neutral gas) and SFRs are correlated at constant σ. Similarly, lower gas fractions (ratios of gas to stellar mass) are correlated with higher σ at constant SFR. The limits of the σ–ΣSFR relation correspond to the onset of strong outflows. We see evidence of ‘on-off’ cycles of star formation in the simulations, corresponding to feedback injection time-scales of 10–100 Myr, where SFRs oscillate about equilibrium SFR predictions. Finally, SFRs and velocity dispersions in the simulations agree well with feedback-regulated and marginally stable gas disc (Toomre’s Q = 1) model predictions, and the simulation data effectively rule out models assuming that gas turns into stars at (low) constant efficiency (i.e. 1 per cent per free-fall time). And although the simulation data do not entirely exclude gas accretion/gravitationally powered turbulence as a driver of σ, it appears to be subdominant to stellar feedback in the simulated galaxy discs at z ≈ 0. 
    more » « less
  5. ABSTRACT

    The processes of star formation and feedback, regulating the cycle of matter between gas and stars on the scales of giant molecular clouds (GMCs; ∼100 pc), play a major role in governing galaxy evolution. Measuring the time-scales of GMC evolution is important to identify and characterize the specific physical mechanisms that drive this transition. By applying a robust statistical method to high-resolution CO and narrow-band H α imaging from the PHANGS survey, we systematically measure the evolutionary timeline from molecular clouds to exposed young stellar regions on GMC scales, across the discs of an unprecedented sample of 54 star-forming main-sequence galaxies (excluding their unresolved centres). We find that clouds live for about 1−3 GMC turbulence crossing times (5−30 Myr) and are efficiently dispersed by stellar feedback within 1−5 Myr once the star-forming region becomes partially exposed, resulting in integrated star formation efficiencies of 1−8 per cent. These ranges reflect physical galaxy-to-galaxy variation. In order to evaluate whether galactic environment influences GMC evolution, we correlate our measurements with average properties of the GMCs and their local galactic environment. We find several strong correlations that can be physically understood, revealing a quantitative link between galactic-scale environmental properties and the small-scale GMC evolution. Notably, the measured CO-visible cloud lifetimes become shorter with decreasing galaxy mass, mostly due to the increasing presence of CO-dark molecular gas in such environment. Our results represent a first step towards a comprehensive picture of cloud assembly and dispersal, which requires further extension and refinement with tracers of the atomic gas, dust, and deeply embedded stars.

     
    more » « less