skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Searching for Fast Demosaicking Algorithms
We present a method to automatically synthesize efficient, high-quality demosaicking algorithms, across a range of computational budgets, given a loss function and training data. It performs a multi-objective, discrete-continuous optimization which simultaneously solves for the program structure and parameters that best tradeoff computational cost and image quality. We design the method to exploit domain-specific structure for search efficiency. We apply it to several tasks, including demosaicking both Bayer and Fuji X-Trans color filter patterns, as well as joint demosaicking and super-resolution. In a few days on 8 GPUs, it produces a family of algorithms that significantly improves image quality relative to the prior state-of-the-art across a range of computational budgets from 10 s to 1000 s of operations per pixel (1 dB–3 dB higher quality at the same cost, or 8.5–200× higher throughput at same or better quality). The resulting programs combine features of both classical and deep learning-based demosaicking algorithms into more efficient hybrid combinations, which are bandwidth-efficient and vectorizable by construction. Finally, our method automatically schedules and compiles all generated programs into optimized SIMD code for modern processors.  more » « less
Award ID(s):
1723445 2217878
PAR ID:
10342459
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
41
Issue:
5
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes an automatic parameter selection framework for optimizing the performance of parameter-dependent regularized reconstruction algorithms. The proposed approach exploits a convolutional neural network for direct estimation of the regularization parameters from the acquired imaging data. This method can provide very reliable parameter estimates in a computationally efficient way. The effectiveness of the proposed approach is verified on transform-learning-based magnetic resonance image reconstructions of two different publicly available datasets. This experiment qualitatively and quantitatively measures improvement in image reconstruction quality using the proposed parameter selection strategy versus both existing parameter selection solutions and a fully deep-learning reconstruction with limited training data. Based on the experimental results, the proposed method improves average reconstructed image peak signal-to-noise ratio by a dB or more versus all competing methods in both brain and knee datasets, over a range of subsampling factors and input noise levels. 
    more » « less
  2. For a given PDE problem, three main factors affect the accuracy of FEM solutions: basis order, mesh resolution, and mesh element quality. The first two factors are easy to control, while controlling element shape quality is a challenge, with fundamental limitations on what can be achieved. We propose to use p-refinement (increasing element degree) to decouple the approximation error of the finite element method from the domain mesh quality for elliptic PDEs. Our technique produces an accurate solution even on meshes with badly shaped elements, with a slightly higher running time due to the higher cost of high-order elements. We demonstrate that it is able to automatically adapt the basis to badly shaped elements, ensuring an error consistent with high-quality meshing, without any per-mesh parameter tuning. Our construction reduces to traditional fixed-degree FEM methods on high-quality meshes with identical performance. Our construction decreases the burden on meshing algorithms, reducing the need for often expensive mesh optimization and automatically compensates for badly shaped elements, which are present due to boundary con- straints or limitations of current meshing methods. By tackling mesh gen- eration and finite element simulation jointly, we obtain a pipeline that is both more efficient and more robust than combinations of existing state of the art meshing and FEM algorithms. 
    more » « less
  3. Many areas of machine learning and science involve large linear algebra problems, such as eigendecompositions, solving linear systems, computing matrix exponentials, and trace estimation. The matrices involved often have Kronecker, convolutional, block diagonal, sum, or product structure. In this paper, we propose a simple but general framework for large-scale linear algebra problems in machine learning, named CoLA (Compositional Linear Algebra). By combining a linear operator abstraction with compositional dispatch rules, CoLA automatically constructs memory and runtime efficient numerical algorithms. Moreover, CoLA provides memory efficient automatic differentiation, low precision computation, and GPU acceleration in both JAX and PyTorch, while also accommodating new objects, operations, and rules in downstream packages via multiple dispatch. CoLA can accelerate many algebraic operations, while making it easy to prototype matrix structures and algorithms, providing an appealing drop-in tool for virtually any computational effort that requires linear algebra. We showcase its efficacy across a broad range of applications, including partial differential equations, Gaussian processes, equivariant model construction, and unsupervised learning. 
    more » « less
  4. Many areas of machine learning and science involve large linear algebra problems, such as eigendecompositions, solving linear systems, computing matrix exponentials, and trace estimation. The matrices involved often have Kronecker, convolutional, block diagonal, sum, or product structure. In this paper, we propose a simple but general framework for large-scale linear algebra problems in machine learning, named CoLA (Compositional Linear Algebra). By combining a linear operator abstraction with compositional dispatch rules, CoLA automatically constructs memory and runtime efficient numerical algorithms. Moreover, CoLA provides memory efficient automatic differentiation, low precision computation, and GPU acceleration in both JAX and PyTorch, while also accommodating new objects, operations, and rules in downstream packages via multiple dispatch. CoLA can accelerate many algebraic operations, while making it easy to prototype matrix structures and algorithms, providing an appealing drop-in tool for virtually any computational effort that requires linear algebra. We showcase its efficacy across a broad range of applications, including partial differential equations, Gaussian processes, equivariant model construction, and unsupervised learning. 
    more » « less
  5. Ooi, Boon S (Ed.)
    An energy/area-efficient low-cost broadband linearity enhancement technique using the hybrid of notch-filter and bandpass-filter micro-ring modulators (Hybrid-MRMs) is proposed to achieve higher than 3.01-dB improvement in spurious-free-dynamic-ranges with intermodulation distortions (dSFDRIMD) and 17.9-dB improvement in integral nonlinearity (dINLPP) over a conventional notch-filter MRM (NF-MRM) across a 4.8-dB extinction-ratio full-scale range based on rapid silicon-photonics fabrication results for the emerging applications of various analog and digital optical communication systems. 
    more » « less