skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Iron–histidine bonding in bishistidyl hemoproteins–A local vibrational mode study
Abstract We investigated the intrinsic strength of distal and proximal FeN bonds for both ferric and ferrous oxidation states of bishistidyl hemoproteins from bacteria, animals, human, and plants, including two cytoglobins, ten hemoglobins, two myoglobins, six neuroglobins, and six phytoglobins. As a qualified measure of bond strength, we used local vibrational force constants k(FeN) based on local mode theory developed in our group. All calculations were performed with a hybrid QM/MM ansatz. Starting geometries were taken from available x‐ray structures. k(FeN) values were correlated with FeN bond lengths and covalent bond character. We also investigated the stiffness of the axial NFeN bond angle. Our results highlight that protein effects are sensitively reflected in k(FeN), allowing one to compare trends in diverse protein groups. Moreover, k(NFeN) is a perfect tool to monitor changes in the axial heme framework caused by different protein environments as well as different Fe oxidation states.  more » « less
Award ID(s):
2102461
PAR ID:
10526189
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of Computational Chemistry
Date Published:
Journal Name:
Journal of Computational Chemistry
Volume:
45
Issue:
9
ISSN:
0192-8651
Page Range / eLocation ID:
574 to 588
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract For a series of cytochrome b5 proteins isolated from various species, including bacteria, animals, and humans, we analyzed the intrinsic strength of their distal/proximal FeN bonds and the intrinsic stiffness of their axial NFeN bond angles. To assess intrinsic bond strength and bond angle stiffness, we employed local vibrational stretching force constants ka(FeN) and bending force constants ka(NFeN) derived from the local mode theory developed by our group; the ferric and ferrous oxidation states of the heme Fe were considered. All calculations were conducted with the QM/MM methodology. We found that the reduction of the heme Fe from the ferric to the ferrous state makes the FeN axial bonds weaker, longer, less covalent, and less polar. Additionally, the axial NFeN bond angle becomes stiffer and less flexible. Local mode force constants turned out to be far more sensitive to the protein environment than geometries; evaluating force constant trends across diverse protein groups and monitoring changes in the axial heme‐framework revealed redox‐induced changes to the primary coordination sphere of the protein. These results indicate that local mode force constants can serve as useful feature data for training machine learning models that predict cytochrome b5 redox potentials, which currently rely more on geometric data and qualitative descriptors of the protein environment. The insights gained through our investigation also offer valuable guidance for strategically fine‐tuning artificial cytochrome b5 proteins and designing new, versatile variants. 
    more » « less
  2. ABSTRACT Using the QM/MM methodology and a local mode analysis, we investigated a character and a strength of FeS bonds of heme groups in oxidized and reduced forms of Bacterioferritin fromAzotobacter vinelandii. The strength of the FeS bonds was correlated with a bond length, an energy density at a bond critical point, and a charge difference of the F and S atoms. Changing the oxidation state from ferrous to ferric generally makes the FeS bonds weaker, longer, more covalent, and more polar. We also investigated the SFeS bond bending and found that the stronger FeS bond, generally makes the SFeS bond bending stiffer, which could play a key role in the balance between ferric and ferrous oxidation states and related biological activities. 
    more » « less
  3. High-resolution X-ray diffraction experiments, theoretical calculations and atom-specific X-ray absorption experiments were used to investigate two nickel complexes, (MePh 3 P) 2 [Ni II (bdtCl 2 ) 2 ]·2(CH 3 ) 2 SO [complex (1)] and (MePh 3 P)[Ni III (bdtCl 2 ) 2 ] [complex (2)]. Combining the techniques of nickel K - and sulfur K -edge X-ray absorption spectroscopy with high-resolution X-ray charge density modeling, together with theoretical calculations, the actual oxidation states of the central Ni atoms in these two complexes are investigated. Ni ions in two complexes are clearly in different oxidation states: the Ni ion of complex (1) is formally Ni II ; that of complex (2) should be formally Ni III , yet it is best described as a combination of Ni 2+ and Ni 3+ , due to the involvement of the non-innocent ligand in the Ni— L bond. A detailed description of Ni—S bond character (σ,π) is presented. 
    more » « less
  4. Abstract Atomically dispersed FeN4active sites have exhibited exceptional catalytic activity and selectivity for the electrochemical CO2reduction reaction (CO2RR) to CO. However, the understanding behind the intrinsic and morphological factors contributing to the catalytic properties of FeN4sites is still lacking. By using a Fe‐N‐C model catalyst derived from the ZIF‐8, we deconvoluted three key morphological and structural elements of FeN4sites, including particle sizes of catalysts, Fe content, and Fe−N bond structures. Their respective impacts on the CO2RR were comprehensively elucidated. Engineering the particle size and Fe doping is critical to control extrinsic morphological factors of FeN4sites for optimal porosity, electrochemically active surface areas, and the graphitization of the carbon support. In contrast, the intrinsic activity of FeN4sites was only tunable by varying thermal activation temperatures during the formation of FeN4sites, which impacted the length of the Fe−N bonds and the local strains. The structural evolution of Fe−N bonds was examined at the atomic level. First‐principles calculations further elucidated the origin of intrinsic activity improvement associated with the optimal local strain of the Fe−N bond. 
    more » « less
  5. Abstract Metal–ligand bonding and noncovalent interactions (NCIs), such as hydrogen bonding orπ–πinteractions, play a crucial role in determining the structure, function, and selectivity of both biological and artificial metalloproteins. In this study, we employed a hybrid quantum mechanics/molecular mechanics (QM/MM) approach to investigate the ligation of water or cyanide in a mutated myoglobin system, in which the native heme scaffold was replaced with M-salophen or M-salen Schiff base complexes (M = Cr, Mn, Fe). Using our local vibrational mode analysis, particularly local vibrational mode force constants as intrinsic bond strength parameters, complemented with electron density and natural orbital analyses we explored the role of metal–ligand bonding and NCIs in different environments within the myoglobin pocket. Our analysis revealed that metal–ligand bonding, for both water and cyanide ligands, is strongest in the delta form of distal histidine and favors salophen prosthetic groups, as indicated by an overall increase in metal–ligand bond strength. Hydrogen bonding between the distal histidine and ligand also exhibited greater strength in the delta form; however, this effect was more pronounced with salen prosthetic groups. Additionally, the NCIs within the active pocket of the protein were found to be variable, highlighting the adaptability of local force constants. In summary, our data underscore the potential of computational methodologies in guiding the rational design of artificial metalloproteins for tailored applications, with local vibrational mode analysis serving as a powerful tool for bond strength assessment. 
    more » « less