skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DeLTA 2.0: A deep learning pipeline for quantifying single-cell spatial and temporal dynamics
Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. Although tools for segmenting and tracking bacteria within time-lapse images exist, most require human input, are specialized to the experimental set up, or lack accuracy. Here, we introduce DeLTA 2.0, a purely Python workflow that can rapidly and accurately analyze images of single cells on two-dimensional surfaces to quantify gene expression and cell growth. The algorithm uses deep convolutional neural networks to extract single-cell information from time-lapse images, requiring no human input after training. DeLTA 2.0 retains all the functionality of the original version, which was optimized for bacteria growing in the mother machine microfluidic device, but extends results to two-dimensional growth environments. Two-dimensional environments represent an important class of data because they are more straightforward to implement experimentally, they offer the potential for studies using co-cultures of cells, and they can be used to quantify spatial effects and multi-generational phenomena. However, segmentation and tracking are significantly more challenging tasks in two-dimensions due to exponential increases in the number of cells. To showcase this new functionality, we analyze mixed populations of antibiotic resistant and susceptible cells, and also track pole age and growth rate across generations. In addition to the two-dimensional capabilities, we also introduce several major improvements to the code that increase accessibility, including the ability to accept many standard microscopy file formats as inputs and the introduction of a Google Colab notebook so users can try the software without installing the code on their local machine. DeLTA 2.0 is rapid, with run times of less than 10 minutes for complete movies with hundreds of cells, and is highly accurate, with error rates around 1%, making it a powerful tool for analyzing time-lapse microscopy data.  more » « less
Award ID(s):
2032357
PAR ID:
10342637
Author(s) / Creator(s):
; ; ;
Editor(s):
Coelho, Luis Pedro
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
18
Issue:
1
ISSN:
1553-7358
Page Range / eLocation ID:
e1009797
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tracking plant cells in three-dimensional (3D) tissue captured through light microscopy presents significant challenge due to the large number of densely packed cells, non-uniform growth patterns, and variations in cell division planes across different cell layers. In addition, images of deeper tissue layers are often noisy, and systemic imaging errors further exacerbate the complexity of the task. In this paper, we propose a novel learning-based method DEGAST3D: Learning Deformable 3D GrAph Similarity to Track Plant Cells in Unregistered Time Lapse Images exploits the tightly packed 3D cell structure of plant cells to create a three-dimensional graph for accurate cell tracking. We also propose a novel algorithm for cell division detection and an effective three-dimensional registration, improving state-of-the-art algorithms. On a public dataset, our novel cell pair matching method outperforms the baseline by 6.83%, 5.96%, 6.40% in precision, recall, and F-1 score, respectively. On the same dataset, our proposed novel cell division technique improves the results of the baseline method by 15.38% and 14.78% in terms of recall and Fl-score, respectively. 
    more » « less
  2. Abstract This paper presents a method for time-lapse 3D cell analysis. Specifically, we consider the problem of accurately localizing and quantitatively analyzing sub-cellular features, and for tracking individual cells from time-lapse 3D confocal cell image stacks. The heterogeneity of cells and the volume of multi-dimensional images presents a major challenge for fully automated analysis of morphogenesis and development of cells. This paper is motivated by the pavement cell growth process, and building a quantitative morphogenesis model. We propose a deep feature based segmentation method to accurately detect and label each cell region. An adjacency graph based method is used to extract sub-cellular features of the segmented cells. Finally, the robust graph based tracking algorithm using multiple cell features is proposed for associating cells at different time instances. We also demonstrate the generality of our tracking method on C. elegans fluorescent nuclei imagery. Extensive experiment results are provided and demonstrate the robustness of the proposed method. The code is available on and the method is available as a service through the BisQue portal. 
    more » « less
  3. Abstract Object tracking in microscopy videos is crucial for understanding biological processes. While existing methods often require fine-tuning tracking algorithms to fit the image dataset, here we explored an alternative paradigm: augmenting the image time-lapse dataset to fit the tracking algorithm. To test this approach, we evaluated whether generative video frame interpolation can augment the temporal resolution of time-lapse microscopy and facilitate object tracking in multiple biological contexts. We systematically compared the capacity of Latent Diffusion Model for Video Frame Interpolation (LDMVFI), Real-time Intermediate Flow Estimation (RIFE), Compression-Driven Frame Interpolation (CDFI), and Frame Interpolation for Large Motion (FILM) to generate synthetic microscopy images derived from interpolating real images. Our testing image time series ranged from fluorescently labeled nuclei to bacteria, yeast, cancer cells, and organoids. We showed that the off-the-shelf frame interpolation algorithms produced bio-realistic image interpolation even without dataset-specific retraining, as judged by high structural image similarity and the capacity to produce segmentations that closely resemble results from real images. Using a simple tracking algorithm based on mask overlap, we confirmed that frame interpolation significantly improved tracking across several datasets without requiring extensive parameter tuning and capturing complex trajectories that were difficult to resolve in the original image time series. Taken together, our findings highlight the potential of generative frame interpolation to improve tracking in time-lapse microscopy across diverse scenarios, suggesting that a generalist tracking algorithm for microscopy could be developed by combining deep learning segmentation models with generative frame interpolation. 
    more » « less
  4. Bacterial biofilms represent a basic form of multicellular organization that confers survival advantages to constituent cells. The sequential stages of cell ordering during biofilm development have been studied in the pathogen and model biofilm-formerVibrio cholerae. It is unknown how spatial trajectories of individual cells and the collective motions of many cells drive biofilm expansion. We developed dual-view light-sheet microscopy to investigate the dynamics of biofilm development from a founder cell to a mature three-dimensional community. Tracking of individual cells revealed two distinct fates: one set of biofilm cells expanded ballistically outward, while the other became trapped at the substrate. A collective fountain-like flow transported cells to the biofilm front, bypassing members trapped at the substrate and facilitating lateral biofilm expansion. This collective flow pattern was quantitatively captured by a continuum model of biofilm growth against substrate friction. Coordinated cell movement required the matrix protein RbmA, without which cells expanded erratically. Thus, tracking cell lineages and trajectories in space and time revealed how multicellular structures form from a single founder cell. 
    more » « less
  5. Abstract Immunotherapies have shown promising results in treating patients with hematological malignancies like multiple myeloma, which is an incurable but treatable bone marrow-resident plasma cell cancer. Choosing the most efficacious treatment for a patient remains a challenge in such cancers. However, pre-clinical assays involving patient-derived tumor cells co-cultured in anex vivoreconstruction of immune-tumor micro-environment have gained considerable notoriety over the past decade. Such assays can characterize a patient’s response to several therapeutic agents including immunotherapies in a high-throughput manner, where bright-field images of tumor (target) cells interacting with effector cells (T cells, Natural Killer (NK) cells, and macrophages) are captured once every 30 minutes for upto six days. Cell detection, tracking, and classification of thousands of cells of two or more types in each frame is bound to test the limits of some of the most advanced computer vision tools developed to date and requires a specialized approach. We propose TLCellClassifier (time-lapse cell classifier) for live cell detection, cell tracking, and cell type classification, with enhanced accuracy and efficiency obtained by integrating convolutional neural networks (CNN), metric learning, and long short-term memory (LSTM) networks, respectively. State-of-the-art computer vision software like KTH-SE and YOLOv8 are compared with TLCellClassifier, which shows improved accuracy in detection (CNN) and tracking (metric learning). A two-stage LSTM-based cell type classification method is implemented to distinguish between multiple myeloma (tumor/target) cells and macrophages/monocytes (immune/effector cells). Validation of cell type classification was done both using synthetic datasets andex vivoexperiments involving patient-derived tumor/immune cells. Availability and implementationhttps://github.com/QibingJiang/cell classification ml 
    more » « less