skip to main content

This content will become publicly available on May 1, 2023

Title: The Redshift Evolution of the Binary Black Hole Merger Rate: A Weighty Matter
Abstract Gravitational-wave detectors are starting to reveal the redshift evolution of the binary black hole (BBH) merger rate, R BBH ( z ). We make predictions for R BBH ( z ) as a function of black hole mass for systems originating from isolated binaries. To this end, we investigate correlations between the delay time and black hole mass by means of the suite of binary population synthesis simulations, COMPAS . We distinguish two channels: the common envelope (CE), and the stable Roche-lobe overflow (RLOF) channel, characterized by whether the system has experienced a common envelope or not. We find that the CE channel preferentially produces BHs with masses below about 30 M ⊙ and short delay times ( t delay ≲ 1 Gyr), while the stable RLOF channel primarily forms systems with BH masses above 30 M ⊙ and long delay times ( t delay ≳ 1 Gyr). We provide a new fit for the metallicity-dependent specific star formation rate density based on the Illustris TNG simulations, and use this to convert the delay time distributions into a prediction of R BBH ( z ). This leads to a distinct redshift evolution of R BBH ( z ) for more » high and low primary BH masses. We furthermore find that, at high redshift, R BBH ( z ) is dominated by the CE channel, while at low redshift, it contains a large contribution (∼40%) from the stable RLOF channel. Our results predict that, for increasing redshifts, BBHs with component masses above 30 M ⊙ will become increasingly scarce relative to less massive BBH systems. Evidence of this distinct evolution of R BBH ( z ) for different BH masses can be tested with future detectors. « less
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
2009131
Publication Date:
NSF-PAR ID:
10342642
Journal Name:
The Astrophysical Journal
Volume:
931
Issue:
1
Page Range or eLocation-ID:
17
ISSN:
0004-637X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The existence of primordial black holes (PBHs), which may form from the collapse of matter overdensities shortly after the Big Bang, is still under debate. Among the potential signatures of PBHs are gravitational waves (GWs) emitted from binary black hole (BBH) mergers at redshifts z ≳ 30, where the formation of astrophysical black holes is unlikely. Future ground-based GW detectors, the Cosmic Explorer and Einstein Telescope, will be able to observe equal-mass BBH mergers with total mass of  ( 10 – 100 ) M ⊙ at such distances. In this work, we investigate whether the redshift measurement of a single BBH source can be precise enough to establish its primordial origin. We simulate BBHs of different masses, mass ratios and orbital orientations. We show that for BBHs with total masses between 20 M ⊙ and 40 M ⊙ merging at z ≥ 40, one can infer z > 30 at up to 97% credibility, with a network of one Einstein Telescope, one 40 km Cosmic Explorer in the US, and one 20 km Cosmic Explorer in Australia. This number reduces to 94% with a smaller network made of one Einstein Telescope and one 40 km Cosmic Explorer inmore »the US. We also analyze how the measurement depends on the Bayesian priors used in the analysis and verify that priors that strongly favor the wrong model yield smaller Bayesian evidences.« less
  2. ABSTRACT Supermassive black holes (SMBHs) that reside at the centres of galaxies can inject vast amounts of energy into the surrounding gas and are thought to be a viable mechanism to quench star formation in massive galaxies. Here, we study the $10^{9-12.5}\, \mathrm{M_\odot }$ stellar mass central galaxy population of the IllustrisTNG simulation, specifically the TNG100 and TNG300 volumes at z = 0, and show how the three components – SMBH, galaxy, and circumgalactic medium (CGM) – are interconnected in their evolution. We find that gas entropy is a sensitive diagnostic of feedback injection. In particular, we demonstrate how the onset of the low-accretion black hole (BH) feedback mode, realized in the IllustrisTNG model as a kinetic, BH-driven wind, leads not only to star formation quenching at stellar masses $\gtrsim 10^{10.5}\, \mathrm{M_\odot }$ but also to a change in thermodynamic properties of the (non-star-forming) gas, both within the galaxy and beyond. The IllustrisTNG kinetic feedback from SMBHs increases the average gas entropy, within the galaxy and in the CGM, lengthening typical gas cooling times from $10\!-\!100\, \mathrm{Myr}$ to $1\!-\!10\, \mathrm{Gyr}$, effectively ceasing ongoing star formation and inhibiting radiative cooling and future gas accretion. In practice, the same active galactic nucleusmore »(AGN) feedback channel is simultaneously ‘ejective’ and ‘preventative’ and leaves an imprint on the temperature, density, entropy, and cooling times also in the outer reaches of the gas halo, up to distances of several hundred kiloparsecs. In the IllustrisTNG model, a long-lasting quenching state can occur for a heterogeneous CGM, whereby the hot and dilute CGM gas of quiescent galaxies contains regions of low-entropy gas with short cooling times.« less
  3. Context. Active galactic nuclei (AGN) are thought to be intimately connected with their host galaxies through feeding and feedback processes. A strong coupling is predicted and supported by cosmological simulations of galaxy formation, but the details of the physical mechanisms are still observationally unconstrained. Aims. Galaxies are complex systems of stars and a multiphase interstellar medium (ISM). A spatially resolved multiwavelength survey is required to map the interaction of AGN with their host galaxies on different spatial scales and different phases of the ISM. The goal of the Close AGN Reference Survey (CARS) is to obtain the necessary spatially resolved multiwavelength observations for an unbiased sample of local unobscured luminous AGN. Methods. We present the overall CARS survey design and the associated wide-field optical integral-field unit (IFU) spectroscopy for all 41 CARS targets at z  < 0.06 randomly selected from the Hamburg/ESO survey of luminous unobscured AGN. This data set provides the backbone of the CARS survey and allows us to characterize host galaxy morphologies, AGN parameters, precise systemic redshifts, and ionized gas distributions including excitation conditions, kinematics, and metallicities in unprecedented detail. Results. We focus our study on the size of the extended narrow-line region (ENLR) which has been traditionallymore »connected to AGN luminosity. Given the large scatter in the ENLR size–luminosity relation, we performed a large parameter search to identify potentially more fundamental relations. Remarkably, we identified the strongest correlation between the maximum projected ENLR size and the black hole mass, consistent with an R ENLR,max ∼ M BH 0.5 relationship. We interpret the maximum ENLR size as a timescale indicator of a single black hole (BH) radiative-efficient accretion episode for which we inferred 〈log( t AGN /[yr])〉 = (0.45 ± 0.08)log( M BH /[ M ⊙ ]) + 1.78 −0.67 +0.54 using forward modeling. The extrapolation of our inferred relation toward higher BH masses is consistent with an independent lifetime estimate from the He  II proximity zones around luminous AGN at z  ∼ 3. Conclusions. While our proposed link between the BH mass and AGN lifetime might be a secondary correlation itself or impacted by unknown biases, it has a few relevant implications if confirmed. For example, the famous AGN Eigenvector 1 parameter space may be partially explained by the range in AGN lifetimes. Also, the lack of observational evidence for negative AGN feedback on star formation can be explained by such timescale effects. Further observational tests are required to confirm or rule out our BH mass dependent AGN lifetime hypothesis.« less
  4. ABSTRACT Observations of massive galaxies at low redshift have revealed approximately linear scaling relations between the mass of a supermassive black hole (SMBH) and properties of its host galaxy. How these scaling relations evolve with redshift and whether they extend to lower-mass galaxies, however, remain open questions. Recent galaxy formation simulations predict a delayed, or ‘two-phase,’ growth of SMBHs: slow, highly intermittent BH growth due to repeated gas ejection by stellar feedback in low-mass galaxies, followed by more sustained gas accretion that eventually brings BHs on to the local scaling relations. The predicted two-phase growth implies a steep increase, or ‘kink,’ in BH-galaxy scaling relations at a stellar mass $\rm {M}_{*}\sim 5\times 10^{10}$ M⊙. We develop a parametric, semi-analytic model to compare different SMBH growth models against observations of the quasar luminosity function (QLF) at z ∼ 0.5−4. We compare models in which the relation between SMBH mass and galaxy mass is purely linear versus two-phase models. The models are anchored to the observed galaxy stellar mass function, and the BH mass functions at different redshifts are consistently connected by the accretion rates contributing to the QLF. The best fits suggest that two-phase evolution is significantly preferred by the QLFmore »data over a purely linear scaling relation. Moreover, when the model parameters are left free, the two-phase model fits imply a transition mass consistent with that predicted by simulations. Our analysis motivates further observational tests, including measurements of BH masses and active galactic nuclei activity at the low-mass end, which could more directly test two-phase SMBH growth.« less
  5. ABSTRACT Evolved Wolf–Rayet stars form a key aspect of massive star evolution, and their strong outflows determine their final fates. In this study, we calculate grids of stellar models for a wide range of initial masses at five metallicities (ranging from solar down to just 2 per cent solar). We compare a recent hydrodynamically consistent wind prescription with two earlier frequently used wind recipes in stellar evolution and population synthesis modelling, and we present the ranges of maximum final masses at core He-exhaustion for each wind prescription and metallicity Z. Our model grids reveal qualitative differences in mass-loss behaviour of the wind prescriptions in terms of ‘convergence’. Using the prescription from Nugis & Lamers the maximum stellar black hole is found to converge to a value of 20–30 M⊙, independent of host metallicity; however, when utilizing the new physically motivated prescription from Sander & Vink there is no convergence to a maximum black hole mass value. The final mass is simply larger for larger initial He-star mass, which implies that the upper black hole limit for He-stars below the pair-instability gap is set by prior evolution with mass loss, or the pair instability itself. Quantitatively, we find the critical Z for pair-instability (ZPI) tomore »be as high as 50 per cent Z⊙, corresponding to the host metallicity of the Large Magellanic Cloud. Moreover, while the Nugis & Lamers prescription would not predict any black holes above the approx 130 M⊙ pair-instability limit, with Sander & Vink winds included, we demonstrate a potential channel for very massive helium stars to form such massive black holes at ∼2 per cent Z⊙ or below.« less