skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Gravitational wave memory and the wave equation
Abstract Gravitational wave memory and its electromagnetic analog are shown to be straightforward consequences of the wave equation. From Maxwell’s equations one can derive a wave equation for the electric field, while from the Bianchi identity one can derive a wave equation for the Riemann tensor in linearized gravity. Memory in both cases is derived from the structure of the source of those wave equations.  more » « less
Award ID(s):
2102914 1806219
PAR ID:
10342644
Author(s) / Creator(s):
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
39
Issue:
13
ISSN:
0264-9381
Page Range / eLocation ID:
135010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Starting from Kirchhoff-Huygens representation and Duhamel's principle of time-domain wave equations, we propose novel butterfly-compressed Hadamard integrators for self-adjoint wave equations in both time and frequency domain in an inhomogeneous medium. First, we incorporate the leading term of Hadamard's ansatz into the Kirchhoff-Huygens representation to develop a short-time valid propagator. Second, using Fourier transform in time, we derive the corresponding Eulerian short-time propagator in the frequency domain; on top of this propagator, we further develop a time-frequency-time (TFT) method for the Cauchy problem of time-domain wave equations. Third, we further propose a time-frequency-time-frequency (TFTF) method for the corresponding point-source Helmholtz equation, which provides Green's functions of the Helmholtz equation for all angular frequencies within a given frequency band. Fourth, to implement the TFT and TFTF methods efficiently, we introduce butterfly algorithms to compress oscillatory integral kernels at different frequencies. As a result, the proposed methods can construct wave field beyond caustics implicitly and advance spatially overturning waves in time naturally with quasi-optimal computational complexity and memory usage. Furthermore, once constructed the Hadamard integrators can be employed to solve both time-domain wave equations with various initial conditions and frequency-domain wave equations with different point sources. Numerical examples for two-dimensional wave equations illustrate the accuracy and efficiency of the proposed methods. 
    more » « less
  2. We derive new kinetic and a porous medium equations from the nonlinear Schrödinger equation with random potentials. The kinetic equation has a very similar form compared to the four-wave turbulence kinetic equation in the wave turbulence theory. Moreover, we construct a class of self-similar solutions for the porous medium equation. These solutions spread with time, and this fact answers the “weak turbulence” question for the nonlinear Schrödinger equation with random potentials. We also derive Ohm’s law for the porous medium equation. 
    more » « less
  3. Abstract We derive the Whitham modulation equations for the Zakharov–Kuznetsov equation via a multiple scales expansion and averaging two conservation laws over one oscillation period of its periodic traveling wave solutions. We then use the Whitham modulation equations to study the transverse stability of the periodic traveling wave solutions. We find that all periodic solutions traveling along the first spatial coordinate are linearly unstable with respect to purely transversal perturbations, and we obtain an explicit expression for the growth rate of perturbations in the long wave limit. We validate these predictions by linearizing the equation around its periodic solutions and solving the resulting eigenvalue problem numerically. We also calculate the growth rate of the solitary waves analytically. The predictions of Whitham modulation theory are in excellent agreement with both of these approaches. Finally, we generalize the stability analysis to periodic waves traveling in arbitrary directions and to perturbations that are not purely transversal, and we determine the resulting domains of stability and instability. 
    more » « less
  4. Three wave resonant triad interactions in two space and one time dimensions form a well-known system of first-order quadratically nonlinear evolution equations that arise in many areas of physics. In deep water waves, they were first derived by Simmons in 1969 and later shown to be exactly solvable by Ablowitz & Haberman in 1975. Specifically, integrability was established by introducing a system of six wave interactions whose symmetry reduction leads to the well-known three wave equations. Here, it is shown that the six wave interaction and classical three wave equations satisfying triad resonance conditions in finite-depth gravity waves can be derived from the non-local integro-differential formulation of the free surface gravity wave equation with surface tension. These quadratically nonlinear six wave interaction equations and their reductions to the classical and non-local complex as well as real reverse space–time three wave interaction equations are integrable. Limits to infinite and shallow water depth are also discussed. 
    more » « less
  5. With consideration of a full set of mechanical properties: elasticity, viscosity, and axial and circumferential initial tensions, and radial and axial motion of the arterial wall, this paper presents a theoretical study of pulse wave propagation in arteries and evaluates pulse wave velocity and transmission at the carotid artery (CA) and the ascending aorta (AA). The arterial wall is treated as an initially-tensioned, isotropic, thin-walled membrane, and the flowing blood in the artery is treated as an incompressible Newtonian fluid. Pulse wave propagation in arteries is formulated as a combination of the governing equations of radial and axial motion of the arterial wall, the governing equations of flowing blood in the artery, and the interface conditions that relate the arterial wall variables to the flowing blood variables. We conduct a free wave propagation analysis of the problem and derive a frequency equation. The solution to the frequency equation indicates two waves: Young wave and Lamb wave, propagating in the arterial tree. With the related values at the CA and the AA, we evaluate the influence of arterial wall properties on their wave velocity and transmission, and find the opposite effects of axial and circumferential initial tensions on transmission of both waves. Physiological implications of such influence are discussed. 
    more » « less